Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekularen Draht einstöpseln

12.02.2009
Die richtige Verkabelung macht's: Biokomponente als Herzstück eines künstlichen Photosystems

Pflanzen, Algen und Cyanobakterien (Blaualgen) sind die Meister in Sachen Solarenergie, weil sie in der Lage sind, das aufgefangene Sonnenlicht fast vollständig in chemische Energie umzuwandeln.

Das liegt unter anderem daran, dass die durch die Photonen freigesetzten Elektronen nahezu 1:1 aus dem "Lichtempfänger" abtransportiert und dann als Triebfeder für chemische Reaktionen genuzt werden können. Japanische Forscher haben jetzt einen neuartigen Ansatz entwickelt, um Lichtenergie ähnlich effektiv einzufangen.

Wie sie in der Zeitschrift Angewandte Chemie berichten, "stöpseln" sie einen molekularen "Draht" direkt in ein biologisches photosynthetisches System und leiten die dort freigesetzten Elektronen damit sehr effektiv an eine Goldelektrode weiter.

Der Wirkungsgrad der photovoltaischen Energieumwandlung ist für die praktische Anwendung von Solaranlagen von ausschlaggebender Bedeutung. Theoretisch könnte pro absorbiertem Photon ein Elektron gewonnen werden. Während heutige Solarzellen weit von solchen Werten entfernt sind, schaffen natürliche photosynthetische Systeme eine fast 100%ige Quantenausbeute. Um die Effizienz künstlicher Systeme zu verbessern, wurden Versuche unternommen, die Bio-Lichteinfänger als dünne Schicht auf Elektroden aufzuziehen. Der Transfer der Elektronen von der lichteinfangenden Schicht in den Stromkreis ist in derartigen Systemen jedoch so ineffektiv, dass die Mehrzahl gar nicht erst am Zielort, der Elektrode, ankommt.

Erfolgsgeheimnis natürlicher Photosysteme ist die perfekte Passform der einzelnen Komponenten. Die Moleküle passen wie Steckverbindungen exakt ineinander und können freigesetzte Elektronen direkt und nahezu verlustfrei weiterreichen. Der neue Ansatz der japanischen Forscher verbindet nun trickreich Photosystem I (PSI) der Blaualge Thermosynechococcus elongatus mit einer künstlichen Peripherie. Ein wichtiger Bestandteil in der Elektronenübertragungskette von PSI ist Vitamin K1. Die Forscher entfernten Vitamin K1 aus dem PSI-Proteinkomplex und ersetzten es durch ein künstliches Analogon. Dieses besteht aus drei Teilen: 1) Derselbe molekulare "Stecker", mit dem auch Vitamin K1 in den Proteinkomplex gebunden ist (Naphthochinongruppe), wird zum "Einstöpseln" des künstlichen Verbindungsstückes in das PSI verwendet. 2) Ein molekularer "Draht" (Kohlenwasserstoffkette) gleicher Länge wie bei Vitamin K1 stellt sicher, dass das Verbindungsstück aus dem Proteinkomplex herausragt. 3) Am anderen Ende des Drahtes ist ein zusätzlicher "Stecker" (Viologengruppe), der das Ensemble auf einer speziell beschichteten Goldelektrode verankert. Durch Bestrahlung im PSI freigesetzte und über den Draht weitergeleitete Elektronen überträgt die Viologengruppe sehr effektiv auf die Goldelektrode.

Mit dieser neuen Strategie lassen sich möglicherweise auch andere Biokomponenten als Herzstücke in künstliche Systeme integrieren.

Angewandte Chemie: Presseinfo 05/2009

Autor: Nao Terasaki, National Institute of Advanced Industrial Science and Technology, Tosu (Japan), mailto:nao-terasaki@aist.go.jp

Angewandte Chemie 2009, 121, No. 9, 1613-1615, doi: 10.1002/ange.200805748

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung

26.07.2017 | Biowissenschaften Chemie

Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa

26.07.2017 | Biowissenschaften Chemie

Biomarker zeigen Aggressivität des Tumors an

26.07.2017 | Biowissenschaften Chemie