Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Störenfriede statt Antibiotika? Wie Proteine Kommunikation zwischen Bakterien verhindern

29.07.2016

Schleimig sind sie, doch für Mikroorganismen eine geradezu gemütliche Umgebung: Biofilme. Vor äußeren Einflüssen geschützt, können Bakterien dort ungestört wachsen und Krankheiten auslösen. Wissenschaftlerinnen der Christian-Albrechts-Universität zu Kiel (CAU) erforschen, wie bereits die Entstehung von Biofilmen verhindert werden kann. Darauf basierend könnten Alternativen zu Antibiotika entwickelt werden, gegen die viele Krankheitserreger häufig bereits resistent sind. Ihre Ergebnisse veröffentlichten die Biologinnen und Biologen in der Fachzeitschrift „Frontiers in Microbiology“. Die Studie zeigt, dass Strategien aus der Natur besonders wirksam sind, um Biofilme zu unterbinden.

Eine dünne Schicht, die auf dem Wasser schwimmt, Belag auf Zähnen oder schwarze, schmierige Beläge im Einspülfach der Waschmaschine: Biofilme entstehen, wenn sich Zellen auf Oberflächen anheften und sich dort koordiniert zu dreidimensionalen Zellansammlungen zusammenlagern, eingebettet in eine extrazelluläre Matrix.


Mikroskopische Aufnahmen von in Durchflusszellen gebildeten Biofilmen von Klebsiella oxytoca. Das Protein QQ-2 führt zu einer erheblich reduzierten Biofilmbildung im Vergleich zur Kontrolle.

Nancy Weiland-Bräuer


Ruth A. Schmitz-Streit und Nancy Weiland-Bräuer untersuchen, wie die Kommunikation zwischen Zellen mithilfe von „Quorum quenching“-Proteinen gestört werden kann.

Julia Siekmann / Christian-Albrechts-Universität zu Kiel

Problematisch wird es, wenn sich Biofilme auf medizinischen Geräten oder Implantaten entwickeln. Pathogene Bakterien, die Krankheiten auslösen, stellen ein besonderes Problem dar, da sie in einem Biofilm nicht mehr durch normale Antibiotikagabe angreifbar sind. „Eine Möglichkeit, Krankheiten zu verhindern, ist Biofilme gar nicht erst entstehen zu lassen“, sagt deshalb Professorin Ruth Schmitz-Streit vom Institut für Allgemeine Mikrobiologie der CAU.

Um sich auf Oberflächen zu Zellansammlungen zusammen zu lagern, müssen Bakterien über Signalmoleküle (sogenannte „Autoinducer“) miteinander kommunizieren. Wird diese Kommunikation unterbrochen, kann sich kein Biofilm bilden. Diese Zell-Zell-Kommunikation, das sogenannte „Quorum sensing“ (QS), kann durch störend eingreifende Biomoleküle („Quorum quenching“-Proteine, QQ) beeinflusst werden.

„Proteine können diese Signalmoleküle abbauen oder so modifizieren, dass sie nicht mehr funktionsfähig sind“, erklärt Schmitz-Streit. Ziel der vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Studie war es deshalb, QQ-Proteine zu finden, die diese Kommunikation zwischen Bakterien möglichst wirksam stören.

Im Gegensatz zu bisherigen Forschungen konzentrierten sich Professorin Ruth Schmitz-Streit und Dr. Nancy Weiland-Bräuer, ebenfalls CAU, bei ihrer Suche auf natürliche Umgebungen außerhalb des Labors. „Denn Prinzipien, die in der Natur vorkommen, haben sich evolutionär über einen langen Zeitraum entwickelt und durchgesetzt. Dadurch sind sie besonders wirkungsvoll“, so Schmitz-Streit.

Das zeigte das Forschungsteam mit einem metagenomischen Ansatz: Sie entnahmen Proben aus Meerwasser, aus Gletschern, aber auch von Quallen oder aus Biofilmrückständen in einer Waschmaschine. Daraus extrahierten sie die Gesamt-DNA und suchten davon ausgehend Proteine mit der Fähigkeit, Signalmoleküle abzubauen oder unwirksam zu machen.

Schmitz-Streit und Weiland-Bräuer stellten dabei fest, dass die Anzahl von QQ-Proteinen, die eine Zell-Zell-Kommunikation verhindern können, in den untersuchten marinen Umwelt-Proben tatsächlich enorm hoch ist – höher als bei terrestrischen Proben. „Das marine System rund um Meer, Wasser oder Algen ist als das älteste Ökosystem besonders reichhaltig an neuen, noch unentdeckten Substanzen. Hierin steckt ein großes Potenzial von biologischen Aktivitäten und QQ-Mechanismen“, so Schmitz-Streit.

Die Forschungsgruppe fand noch mehr: Das kommunikationsstörende Protein QQ-2 zeigte sich in den Untersuchungen als besonders wirksam. „Dieses Protein ist sehr robust und kann viele verschiedene Biofilme verhindern“, erklärt Weiland-Bräuer. Frühere Studien konzentrierten sich eher darauf, eine bestimmte Sprache von Bakterien zu stören. „Das QQ-2-Protein ist dagegen auf eine ‚Universalsprache‘ ausgerichtet und kann die Kommunikation von verschiedenen Bakterien stören. Es ist also ein ‚genereller Störenfried‘.“

Diese Grundlagenforschung liefert wichtige Erkenntnisse für eine mögliche biotechnologische und medizinische Anwendung in der Zukunft. Kann die Kommunikation von pathogenen Bakterien bewusst gestört werden, hindert das die Bakterien daran, in Biofilmen zu wachsen und Krankheiten auszulösen. Angesichts der steigenden Antibiotikaresistenz von Krankheitserregern könnte die hohe Wirksamkeit von natürlichen QQ-Mechanismen ein wirkungsvoller Ansatz in der Entwicklung von Medikamenten sein.

Originalpublikation:
Weiland-Bräuer, N., Kisch, M., Pinnow, N., Liese, A., Schmitz, R.A.: „Highly effective inhibition of biofilm formation by the first 1 metagenome-derived AI-2 quenching enzyme.” Frontiers in Microbiology, 13 July 2016. DOI: 10.3389/fmicb.2016.01098
http://journal.frontiersin.org/article/10.3389/fmicb.2016.01098/full

Kontakt:
Prof. Ruth A. Schmitz-Streit
Institut für Allgemeine Mikrobiologie
Telefon: 0431/880-4334
E-Mail: rschmitz@ifam.uni-kiel.de

Dr. Nancy Weiland-Bräuer
Institut für Allgemeine Mikrobiologie
Telefon: 0431/880-1648
E-Mail: nweiland@ifam.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Verfahren zum Nachweis eines Tumormarkers in bösartigen Lymphomen
23.11.2017 | Wilhelm Sander-Stiftung

nachricht Wie Urbakterien Entzündungsreaktionen auslösen können
23.11.2017 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Signal-Shaping macht Bits und Bytes Beine

23.11.2017 | Förderungen Preise

Maximale Sonnenenergie aus der Hausfassade

23.11.2017 | Architektur Bauwesen

Licht ermöglicht „unmögliches“ n-Dotieren von organischen Halbleitern

23.11.2017 | Energie und Elektrotechnik