Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Partnersuche: Welcher Ligand passt zu welchem Rezeptor?

17.07.2015

Medikamente wie Antihistaminika oder Betablocker, die in unserem Körper wirken, binden an G-Protein-gekoppelte Rezeptoren. Diese Moleküle leiten dann ein Signal von außen ins Zellinnere und lösen so eine Reaktion in der Zelle aus. Menschen verfügen über mehrere hundert verschiedene solcher Moleküle, von denen viele unerlässlich sind.

Dr. Gáspár Jékely, unabhängiger Arbeitsgruppenleiter am Max-Planck-Institut für Entwicklungsbiologie in Tübingen, berichtet in Cell Reports über eine neue Strategie zur besonders schnellen Identifizierung von bisher unbekannten Rezeptoren. Damit kann auch die evolutionäre Vergangenheit dieser weitverbreiteten Rezeptorfamilie aufgeklärt werden.


Mariner Borstenwurm Platynereis dumerilii

Tom Pingel

Da es einige hundert G-Protein-gekoppelte Rezeptoren, so genannte GPCRs, und viele tausend potentielle Liganden gibt, ist es sehr schwierig und zeitaufwändig, die richtigen Kombinationen zwischen Rezeptoren und Liganden zu finden. In dieser Studie wurden 87 GPCRs aus Platynereis und 126 verschiedene sogenannte Neuropeptide als potentielle Liganden untersucht. Durch diese große Zahl kamen über zehntausend Kombinationsmöglichkeiten zustande, die es zu testen galt.

“Wir mussten uns eine gute Strategie überlegen, um diese Aufgabe in circa einem Jahr bewältigen zu können, und nicht etwa fünf Jahre oder noch länger zu brauchen”, kommentiert Philipp Bauknecht, der Promotionsstudent, der die Experimente durchführte. Ähnlich wie beim Speed-dating sollte jeder Rezeptor innerhalb einer kurzen Zeit einmal auf jedes Neuropeptid treffen. Dies wurde dadurch erreicht, dass jeder GPCR zusammen mit einer komplexen Neuropeptidmischung getestet wurde. Wenn es einen “Treffer” zwischen dem GPCR und einem der Liganden aus der Mischung gab, wurde dies durch grünes Licht sichtbar, das von einem fluoreszierenden Protein ausgestrahlt wurde.

Die Wissenschaftler forschten danach nur an denjenigen GPCRs weiter, die zuvor aktiviert worden waren, und testeten nun Kombinationen von Mischungen, die nur noch einen Teil der Neuropeptide enthielten. Durch die Kombination der Ergebnisse aus unterschiedlichen Mischungen konnten sie die richtigen Liganden für die GPCRs bestimmen.

Diejenigen GPCRs, für die ein Ligand identifiziert worden war, wurden dann für eine evolutionäre Analyse verwendet. Die Wissenschaftler fanden verwandte GPCRs in Tieren wie Muscheln, Schnecken und Insekten, aber auch Ratten, Mäusen und Menschen. Für einige der identifizierten GPCR-Familien war zuvor noch kein aktivierender Ligand bekannt gewesen. Das Team konnte zeigen, dass einige der GPCR-Liganden-Paare über Säugetiere, Fische und Insekten hinweg bis zu Würmern evolutionär konserviert sind. Sie kamen also bereits im letzten gemeinsamen Vorfahren des Menschen und des Borstenwurms Platynereis vor, einem Tier, das vor etwa 550 Millionen Jahren lebte.

Ein besonders interessanter Fund war ein Ligand für den Thyrotropin-releasing-Hormon-Rezeptor der wirbellosen Tiere. Wie der Name andeutet, ist der Ligand dieses Rezeptors das Peptid Thyrotropin-releasing-Hormon (TRH). Dieses Peptid kommt in Wirbeltieren vor und hilft dort, den Stoffwechsel zu steuern. Bisher war angenommen worden, dass bei Wirbellosen dieses Peptid fehlt, obwohl der Rezeptor vorhanden ist.

Durch diese Studie konnte die Forschergruppe einen Liganden für den TRH-Rezeptor der Wirbellosen identifizieren: ein kurzes Neuropeptid, das tatsächlich mit dem TRH der Wirbeltiere verwandt zu sein scheint. Es war bisher nicht erkannt worden, weil es so kurz ist und die wenigen Aminosäuren, aus denen es aufgebaut ist, sich im Lauf der Evolution geändert haben. “Ohne das Rezeptor-Liganden-Paar hätten wir dieses Rätsel nicht lösen können”, erläutert Dr. Gáspár Jékely. Der Rezeptor ist viel länger als das Peptid, und konserviert genug, um die Verwandtschaft des Wirbeltier-Rezeptors mit dem Rezeptor der Wirbellosen deutlich werden zu lassen.

Diese neue Zusammenstellung von GPCR-Liganden-Paaren aus dem Borstenwurm Platynereis wird anderen Wissenschaftlern aus dem Gebiet der Neurowissenschaften helfen, ähnliche Paare in anderen Tierarten leichter zu identifizieren. Außerdem lässt sich die Strategie, komplexe Peptidmischungen zu verwenden, leicht auf andere Spezies übertragen. Ähnliche Studien an anderen Tierarten könnten das Bild, das wir derzeit von der Evolution der GPCRs haben, noch erweitern.

Originalpublikation:
Philipp Bauknecht und Gáspár Jékely
Large-scale combinatorial deorphanization of Platynereis neuropeptide GPCRs, Cell Reports 2015,
DOI: http://dx.doi.org/10.1016/j.celrep.2015.06.052

Weitere Informationen:

http://dx.doi.org/10.1016/j.celrep.2015.06.052

Nadja Winter | Max-Planck-Institut für Entwicklungsbiologie
Weitere Informationen:
http://eb.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften