Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare optische Täuschung

09.06.2011
Aromatisches Ringsystem erinnert an M.C. Eschers Penrose-Treppe

Wer kennt es nicht, das berühmte Bild von M. C. Escher mit der Treppe, die immer nur treppauf führt, obwohl sie einen geschlossenen Kreis bildet, nach ihren Erfindern Lionel und Roger Penrose auch als „Penrose-Treppe“ bezeichnet – eine trickreiche optische Täuschung. Hiroyuki Isobe und ein Team von der Tohoku und der Tsukuba University (Japan) stellen jetzt in der Zeitschrift Angewandte Chemie ein Molekül vor, das an diese Penrose-Treppe erinnert.

Um die chemische Zusammensetzung und den strukturellen Aufbau von Molekülen zu veranschaulichen, stellt man diese an sich dreidimensionalen Objekte notwendigerweise in Form zweidimensionaler Strichzeichnungen dar. Oft wird ihnen auch ein zusätzlicher perspektivischer Anstrich mitgegeben, um die räumliche Anordnung der einzelnen Molekülteile zueinander herauszuarbeiten.

Zweidimensionale Zeichnungen können das Auge täuschen und dem Betrachter dreidimensionale Objekte vorgaukeln, die in der Realität unmöglich sind. So fasziniert und amüsiert uns die Betrachtung von Bildern solcher optischen Täuschungen, wie sie gern von M.C. Escher gezeichnet wurden. Eines seiner berühmtesten Werke ist eine Lithographie, die sich an die Penrose-Treppe anlehnt, auf der Menschen im Kreis laufen, obwohl sie augenscheinlich immer nur treppab gehen.

An diese Treppe fühlten sich die Wissenschaftler um Isobe erinnert, als sie ein Molekül aus der Klasse der so genannten Cyclobis[4]helicene synthetisierten und als Linienzeichnung darstellten. Helicene bestehen aus planaren aromatischen Kohlenstoffsechsringen, die miteinander über je eine gemeinsame Kante gewinkelt verknüpft sind. Aus räumlichen Gründen müssen sich die Moleküle spiralförmig winden. Ein [4]Helicen besteht aus vier verknüpften Ringen. Zwei solcher Einheiten kuppelten die japanischen Wissenschaftler ringförmig über zwei Einfachbindungen aneinander.

Eine Wendel (Helix) kann sich rechts herum oder links herum winden. Im Fall der Ringe aus zwei Helicenen winden sich beide Helicen-Einheiten in die selbe Richtung. Dargestellt als perspektivische zweidimensionale Strichzeichnung erweckt das Doppel-Helicen den Eindruck der Penrose-Treppe: Beide Hälften führen treppab, trotzdem landet man beim gedanklichen Rundgang nach einer Umdrehung natürlich wieder am Ausgangspunkt.

Wie kann das sein? Das Molekül ist ja kein unmögliches Objekt, sondern existiert, und seine Struktur ist auch nicht anders als angenommen. Die Lösung des Verwirrspiels zeigt sich, wenn man das Molekül von der Seite darstellt: Die axiale Drehung der Einfachbindungen zwischen den zwei Bausteinen ermöglich die geneigte Orientierung der Helicen-Ringsysteme.

Isobe hofft, dass diese Molekülklasse interessante Perspektiven als Baustein für Flüssigkristalle eröffnen könnte.

Angewandte Chemie: Presseinfo 23/2011

Autor: Hiroyuki Isobe, Tohoku University (Japan), http://www.orgchem2.chem.tohoku.ac.jp/Isobe/Curriculum_Vitae.html

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201102210

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Im Mikrokosmos wird es bunt: 124 Farben dank RGB-Technologie
22.06.2017 | Max-Planck-Institut für Biochemie

nachricht CO2-neutraler Wasserstoff aus Biomasse
22.06.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

Die Zukunft der Informationstechnologie - Internationale Konferenz erstmals in Aachen

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

22.06.2017 | Geowissenschaften

Wie Protonen durch eine Brennstoffzelle wandern

22.06.2017 | Energie und Elektrotechnik

Tröpfchen für Tröpfchen

22.06.2017 | Biowissenschaften Chemie