Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Mechanismen in der Verhinderung von Autoimmunität durch Roquin aufgeklärt

14.07.2014

Forschern des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) München und der Technischen Universität München (TUM) ist ein wichtiger Schritt zum besseren Verständnis der Entstehung von Autoimmunkrankheiten gelungen.

Sie konnten die räumliche Struktur des Roquin-Proteins beim Andocken an Boten-Ribonukleinsäuremoleküle (mRNA) lösen. Dabei erkannten sie, dass es ein viel größeres Spektrum von funktionell wichtigen Roquin Bindungspartnern gibt als bisher vermutet. Die neuen Erkenntnisse sind in der Fachzeitschrift Nature Structural & Molecular Biology veröffentlicht.


Roquin (blau) bindet an mRNA (violett) | Source: Sattler/HMGU

Das im Jahr 2005 entdeckte Protein Roquin kontrolliert die Aktivierung und Differenzierung von T-Zellen, indem es die Expression bestimmter mRNAs reguliert. Das Roquin-Protein hilft dabei, die immunologische Toleranz des Körpers zu gewährleisten und eine fehlgeleitete Immunreaktion – wie sie beispielsweise bei Autoimmunerkrankungen* ursächlich ist – zu verhindern. Roquin ist damit ein Immunregulator.

Autoimmunerkrankungen betreffen fünf bis zehn Prozent der Menschen in unserer Gesellschaft. Sie entstehen zumeist unter komplexen Umwelteinflüssen, wenn eine genetische Veranlagung vorhanden ist. Die Krankheitsentstehung ist jedoch nur äußerst selten durch die Veränderung eines einzelnen Gens bedingt.

Ein solcher Fall wurde jedoch in einem Mausmodell gezeigt, in dem eine einzige Mutation im Roquin-Gen die Entstehung der Autoimmunerkrankung des Systemischen Lupus Erythematodes verursacht. Diese Mutation von Roquin verursachte außerdem eine starke Prädisposition für Typ I Diabetes und Rheumatoide Arthritis und führte zur Entstehung von angioimmunoblastischen T-Zell Lymphomen.

Aufklärung der Raumstruktur des Roquin-RNA Komplexes

Ein interdisziplinäres Forschungsteam um die Arbeitsgruppen von Prof. Dr. Michael Sattler, PD Dr. Dierk Niessing und Prof. Dr. Vigo Heissmeyer am Helmholtz Zentrum München, der Ludwig-Maximilians-Universität und der Technischen Universität München konnte nun im Detail zeigen, wie Roquin seine RNA-Bindungspartner erkennt und dadurch T-Zell-Funktionen steuert.

Dafür bestimmten die Erstautoren der Studie Dr. Andreas Schlundt, Gitta Heinz und Dr. Robert Janowski an der Röntgenkristallographie Plattform des Helmholtz Zentrum München die Raumstruktur der RNA-Bindungsdomäne des Roquin-Proteins nach dem Andocken an die RNA. Die Wechselwirkung des Proteins in Lösung mit weiteren RNA-Bindungspartnern wurde mittels Kernspinresonanz (NMR) Spektroskopie am Bayerischen NMR Zentrum, einer gemeinsamen Forschungsinfrastruktur des Helmholtz Zentrums München und der Technischen Universität München, untersucht. Die Relevanz der so gefundenen Interaktionen zwischen RNA und Protein konnte dann durch Roquin-abhängige Genregulation in Zellsystemen validiert werden.

Die gewonnenen Ergebnisse bilden erstmals die molekularen Wechselwirkungen ab, mit denen ein Bindemotiv in der mRNA eines Gens durch Roquin erkannt wird. „Überraschenderweise zeigte sich, dass ein viel größeres Spektrum an Bindemöglichkeiten eine wichtige funktionelle Rolle für die Genregulation in T-Zellen spielt“, betont Sattler. „Unsere Ergebnisse deuten daraufhin, dass Roquin eine größere Zahl von Genen reguliert als bisher angenommen.“ ergänzt Niessing.

Denn neben den mRNAs mit perfekten Erkennungsmotiven, die von Roquin mit hoher Affinität gebunden und vorrangig reguliert werden, existiert auch eine potentiell weit größere Anzahl von mRNAs mit etwas schwächerer Bindung, welche jedoch auch durch Roquin reguliert werden. „Aufgrund dieser Befunde werden wir uns jetzt intensiv mit der Regulation der zellulären Mengen von Roquin auseinandersetzen, da bei wechselnder Verfügbarkeit des Proteins vorrangig und schwach gebundene Ziel-mRNAs eine grundsätzlich andere Regulation erfahren“, erklärt Heissmeyer.

Grundlage für die Entwicklung einer Therapie

Die Definition des molekularen Zusammenspiels zwischen Roquin und der RNA ist die Voraussetzung dafür, die Funktion des Roquin-Proteins zu steuern und seine Rolle für therapeutische Strategien zu Behandlung von Autoimmunerkrankungen zu nutzen. Zu diesem Zweck planen die Forscher nun Folgestudien, in denen sie herausfinden wollen, wie die Funktion von Roquin manipuliert werden kann.

Weitere Informationen

Hintergrund

*Autoimmunkrankheiten treten auf, wenn das Immunsystem dahingehend aktiviert wird, eine Reaktion gegen normales Körpergewebe zu starten und dieses wie einen Krankheitskeim zu behandeln. Dabei wird das Gewebe dann beschädigt oder zerstört. Bei Typ I Diabetes tritt beispielsweise eine Immunreaktion gegen die Insulin-abgebenden Zellen der Bauchspeicheldrüse auf, bei Lupus kann nahezu jeder Teil des Körpers vom Immunsystem angegriffen werden.

Original-Publikation:

Schlundt A. et al. (2014). Structural basis for RNA recognition in roquin-mediated post-transcriptional gene regulation, Nat Struct Mol Biol nähere Angaben bitte noch einfügen, doi:10.1038/nsmb.2855
Link zur Fachpublikation:http://www.nature.com/nsmb/journal/vaop/ncurrent/full/nsmb.2855.html

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Ge-netik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.200 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 34.000 Beschäftigten angehören http://www.helmholtz-muenchen.de/index.html

Das Institut für Strukturbiologie (STB) erforscht die Raumstruktur biologischer Makromoleküle, analysiert deren Struktur und Dynamik und entwickelt NMR-spektroskopie Methoden für diese Untersuchungen. . Ziel ist es, molekulare Mechanismen der biologischen Aktivität dieser Moleküle und ihre Beteiligung an Krankheiten aufzuklären. Die Strukturdaten werden als Grundlage für die rationale Entwicklung kleiner Molekülinhibitoren in Verbindung mit Ansätzen der chemischen Biologie angewandt.http://www.helmholtz-muenchen.de/en/stb/index.html

Ansprechpartner für die Medien

Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: 089-3187-2238 - Fax: 089-3187-3324 - E-Mail: presse@helmholtz-muenchen.de

Fachlicher Ansprechpartner

Vigo Heissmeyer, Abt. Molekulare Immunregulation, Institut für Molekulare Immunologie, Tel.: +49 89 3187 1214, Fax: +49 89 3187-1300, E-Mail:vigo.heissmeyer@helmholtz-muenchen.de
Dierk Niessing, Arbeitsgruppe Intrazellulärer Transport & RNA-Biologie, Institut für Strukturbiologie, Tel.: +49 89 3187-2176, E-Mail:niessing@helmholtz-muenchen.de
Michael Sattler, Institut für Strukturbiologie, Tel: +49 89 3187-3800, Fax: +49 89 28913869, E-Mail: sattler@helmholtz-muenchen.de
Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg,

Weitere Informationen:

http://www.helmholtz-muenchen.de/aktuelles/uebersicht/pressemitteilungnews/artic...

Susanne Eichacker | Helmholtz-Zentrum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit