Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Lichtschalter

11.03.2010
Moleküle, die erst bei Bestrahlung mit Licht ihre biologische Funktion entfalten, könnten an genau definierter Stelle im Organismus "angeschaltet" werden. Wissenschaftlern vom Leibniz-Institut für Molekulare Pharmakologie (FMP) und von der Technischen Universität Berlin ist es gelungen, solche lichtsensiblen molekularen Strukturen zu entwickeln. Als Vorbild diente ihnen dabei der Sehprozess im Auge.

Lösliche Substanzen, also auch Medikamente, werden in der Regel im Gießkannenprinzip im Körper verteilt. Sie erreichen so zwar ihre Zielproteine - allerdings auch dort, wo dies gar nicht erwünscht ist. Wissenschaftler versuchen daher Methoden zu entwickeln, mit denen sie die Funktion von Wirkstoffen räumlich und zeitlich genau steuern können.

Um ein ausgewähltes Areal von Zellen - etwa die Zellen eines Tumors - zu erreichen, muss der entsprechende Wirkstoff möglichst örtlich begrenzt in eine aktive Form überführt werden und beim Verlassen des Areals wieder in die inaktive Form überführbar sein. Wissenschaftlern vom Leibniz-Institut für Molekulare Pharmakologie (FMP) ist ein entscheidender Schritt in diese Richtung gelungen: Sie haben einen Lichtschalter in ein Peptidmodell eingefügt, das einen Teil eines biologisch aktiven Proteins modelliert.

Befindet sich der Schalter im Grundzustand, hindert er das Peptid daran, an das Protein zu binden. Wird der Schalter durch Bestrahlung "umgelegt", lässt er die Bindung des Peptids an sein Zielprotein zu. Christian Hoppmann vom FMP erläutert: "Mit diesem Modellpeptid können wir die entsprechende natürliche Protein-Protein-Wechselwirkung und damit die entsprechende Signalkette mittels Licht steuern."

Ein Peptid ist ein kleines Protein, wie dieses besteht es aus Aminosäuren in einer definierten Reihenfolge, die die biologische Information zur Wechselwirkung mit anderen Molekülen wie Proteinen enthält. Ein bekanntes Peptid ist Insulin zur Regulierung des Blutzuckerspiegels, ebenso Gastrin, das die Produktion von Magensäure anregt. Peptide beeinflussen also gezielt Funktionen des Körpers - genau das sollen auch Medikamente tun - und darüber hinaus haben sie als körpereigene Substanzen den Vorteil, kaum Abwehrreaktionen des Körpers hervorzurufen. Peptide können ihre Form verändern, indem sie untereinander Wasserstoffbrückenbindungen ausbilden. Diese sogenannte Sekundärstruktur kann eine Helix, also eine Spirale, oder ein Haarnadel-beta-Faltblatt sein. Gelingt es mit Hilfe eines molekularen Schalters, in einem Peptid, die Sekundärstruktur zu destabilisieren oder zu fördern, lässt sich damit die Peptideigenschaft kontrollieren.

Der molekulare Schalter, den die FMP-Wissenschaftler in das Peptid eingebaut haben, liegt im Grundzustand in einer gestreckten Form vor, der sogenannten trans-Form. In dieser gestreckten Form hält der Schalter die beiden Ketten des Peptids auseinander und hindert sie daran, eine Sekundärstruktur zu bilden. Durch Bestrahlung mit UV-Licht der Wellenlänge von ca. 330 Nanometern wird der Schalter in die sogenannte cis-Form überführt, die den beiden flankierenden Peptidketten erlaubt, miteinander Wasserstoffbrückenbindungen und damit eine Sekundärstruktur auszubilden. Mit dem Schalter in der cis-Form wandelt sich das Peptid also in die für die Wechselwirkung mit dem Protein notwendige Haarnadel-?-Faltblattstruktur um. Das Peptid bindet so an die spezifischen Stellen im Protein. Christian Hoppmann sagt: "Wir haben uns das Prinzip beim Sehprozess abgeguckt. Beim Sehen passiert nämlich auf der Retina genau das Gleiche: Durch Lichteinfall wird in dem natürlichen Schaltersystem ein Übergang von cis- zu trans-Form bewirkt, wodurch eine Strukturänderung in dem beteiligten Protein ausgelöst und das Signal übertragen wird."

Im FMP ist es gelungen, das erste wasserlösliche, lichtschaltbare Peptidmodell einer Haarnadel-?-Faltblattstruktur zu entwickeln, deren biologische Funktion mit Licht gesteuert werden kann. Diese sind in einer Vielzahl biologisch wichtiger Proteinwechselwirkungen involviert.

Hoppmann, Christian el al.: Lichtgesteuerte Proteinbindung einer biologisch relevanten -Faltblattstruktur. In: Angewandte Chemie 2009-121/36, DOI 10.1002/ange.200901933

Kontakt:
Dipl.-Chemiker Christian Hoppmann
Leibniz-Institut für Molekulare Pharmakologie (FMP)
Abteilung Peptidchemie
Robert-Rössle-Str. 10
13125 Berlin
Tel. +49 30 947 93 240
E-mail: hoppmann@fmp-berlin.de

Gesine Wiemer | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fmp-berlin.de
http://www.fv-berlin.de/pm_archiv/2010/10-lichtschalter.html -

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie