Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare „Gangschaltung“ für Nervensignale

06.02.2017

Nervenzellen kommunizieren über Botenstoffe, die in kleinen Bläschen (Vesikeln) portionsweise verpackt sind. Sie schütten dazu den Inhalt dieser Vesikel in den synaptischen Spalt aus, der sie vom Nachbarn trennt. Jetzt haben Forscher der Goethe Universität beim Fadenwurm entdeckt, dass die Vesikel auch unterschiedlich gefüllt sein können. Gesteuert wird die Füllmenge über den Signalstoff cAMP.

Wird ein Neuron elektrisch angeregt, verschmelzen die Vesikel mit der Zellmembran und entlassen die Botenstoffe aus dem Inneren des Neurons in den synaptischen Spalt. Je nach Stärke des Signals kann die Nervenzelle mehr oder weniger Vesikel pro Zeit ausschütten. Das ist einem molekularen Gaspedal des Neurons vergleichbar.


Dünnschnitt durch die Synapse eines Motorneurons des Fadenwurms Caenorhabditis elegans. Die synaptischen Vesikel (grün, rot) sind von der neuronalen Hüllmembran (orange) umgeben. Rote Vesikel sind fusionsfähig. Die blau markierten Vesikel enthalten Neuropeptide, mit denen die Zelle die Füllung der roten und grünen Vesikel kontrolliert.

Copyright: Szi-chieh Yu und Wagner Steuer Costa, Goethe Universität.

„Was wir jetzt entdeckt haben, entspricht dagegen einer Gangschaltung: So wie man bei gleichem Gas in einem höheren Gang eine höhere Geschwindigkeit erreichen kann, löst die Nervenzelle eine stärkere neuronale Aktivität aus, indem sie die Vesikel bei gleichbleibender Anzahl mit mehr Botenstoffen füllt“, erklärt Prof. Alexander Gottschalk vom Buchmann Institut für molekulare Lebenswissenschaften der Goethe Universität.

Wie die Forschergruppe in der aktuellen Ausgabe der Fachzeitschrift „Current Biology“ berichtet, führt der intrazelluläre Signalstoff cyclo-AMP (cAMP) innerhalb der Nervenzellen zur Aktivierung der Neurotransmission. Sie fanden dies heraus, indem sie den Signalstoff durch optogenetische Methoden in den Motorneuronen des Fadenwurms Caenorhabditis elegans vermehrt erzeugten.

Dazu schleusten sie ein lichtaktiviertes Enzym, das cAMP bilden kann, spezifisch in die für Bewegung zuständigen Motorneurone des Wurms ein. Wurden die Tiere mit Licht einer bestimmten Frequenz bestrahlt, entstand mehr cAMP und die Fadenwürmer bewegten sich schneller.

Durch Elektrophysiologie konnten die Forscher nachweisen, dass cAMP die Verschmelzung von synaptischen Vesikeln mit der Membran der Nervenzelle anregt. Gleichzeitig nahm aber auch die Füllung der synaptischen Vesikel mit dem Transmitter Acetylcholin zu. Dies war mit einer elektronenmikroskopisch messbaren Vergrößerung der Vesikel verbunden. Die akute „Extrafüllung“ der Vesikel innerhalb weniger Sekunden wird durch weitere Botenstoffe, sogenannte Neuropeptide ausgelöst. Die optogenetisch stimulierten Neuronen schütten sie aus, um einen Gang höher zu schalten.

Die Forscher vermuten, dass dieser neue Mechanismus zur Kontrolle von Neurotransmission über Neuropeptide nicht nur im Bewegungsnervensystem von Fadenwürmern vorkommt, sondern auch bei Wirbeltieren oder sogar beim Menschen. Denn Neuropeptide werden auch in den Motorneuronen höherer Tiere gefunden - ihre Funktion ist bislang jedoch nur ungenügend bis gar nicht verstanden. Die Arbeitsgruppe von Alexander Gottschalk will nun untersuchen, ob der Mechanismus auch in Wirbeltieren wie Zebrafischen zum Tragen kommt.

Publikation: Wagner Steuer Costa, Szi-chieh Yu, Jana F. Liewald, Alexander Gottschalk: Fast cAMP Modulation of Neurotransmission via Neuropeptide Signals and Vesicle Loading, in: Current Biology, 2. Februar 2017, online; http://dx.doi.org/10.1016/j.cub.2016.12.055).

Informationen: Prof. Alexander Gottschalk, Molekulare Zellbiologie und neuronale Biochemie, Buchmann Institut für Molekulare Lebenswissenschaften (BMLS), Campus Riedberg, Campus Riedberg, Tel.: (069) 798-42518; a.gottschalk@em.uni-frankfurt.de.

Aktuelle Nachrichten aus Wissenschaft, Lehre und Gesellschaft in GOETHE-UNI online (www.aktuelles.uni-frankfurt.de)

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 mit privaten Mitteln überwiegend jüdischer Stifter gegründet, hat sie seitdem Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Medizin, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein hohes Maß an Selbstverantwortung. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geistes- und Sozialwissenschaften. Zusammen mit der Technischen Universität Darmstadt und der Universität Mainz ist sie Partner der länderübergreifenden strategischen Universitätsallianz Rhein-Main.

Internet: www.uni-frankfurt.de

Herausgeberin: Die Präsidentin der Goethe-Universität Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation, Abteilung PR & Kommunikation, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: (069) 798-13035, Fax: (069) 798-763 12531, kaltenborn@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften