Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Baumeister der Blutgefäße

27.01.2015

Entwicklungsbiologen untersuchen die Blutgefäßentstehung im Zebrafisch

Wissenschaftler der Universität Potsdam und des Exzellenzclusters REBIRTH (Von Regenerativer Biologie zu Rekonstruktiver Therapie) an der Medizinischen Hochschule Hannover haben neue Erkenntnisse darüber gewonnen, wie Blutgefäße entstehen und geformt werden.

Die Gruppe um den Entwicklungsbiologen Prof. Dr. Salim Seyfried untersuchte dabei das Wechselspiel zwischen biophysikalischen und molekularen Einflüssen. Mechanische Reize, genetische Faktoren und die Regulation bestimmter Proteine sind für die Neubildung von Gefäßen und für ihre Funktion entscheidend. Die Wissenschaftler konnten nun zeigen, über welchen Mechanismus die beteiligten Moleküle miteinander agieren. Ihre Ergebnisse publizierten die Forscher im renommierten Fachmagazin Developmental Cell.

Arterien und Venen durchziehen den gesamten Körper und transportieren, angetrieben vom Herzen, Blut zu Organen und Geweben. Dabei gleichen diese Blutgefäße einem komplexen Flusssystem, mit mäandrierenden großen Strömen, kleineren Bächen und Rinnsalen. Der Lauf der Blutgefäße ist nicht immer festgefügt und kann sich im Laufe des Lebens ändern.

Nämlich dann, wenn der Bedarf für Blutversorgung steigt. Neue Blutgefäße entstehen dann aus bereits vorhandenen Blutgefäßen in einem Prozess, der als Angiogenese bezeichnet wird. Marc Renz, Dr. Cécile Otten und andere Forscher der Arbeitsgruppe um Prof. Salim Seyfried haben untersucht, von welchen Faktoren die Bildung neuer Gefäße während der Angiogenese abhängt.

„Mechanischer Stress, der durch Blutstrom auf Blutgefäße einwirkt, aktiviert die Expression eines Proteins namens Krüppel like factor 2 (KLF2)“, erklärt Salim Seyfried. KLF2 wird in den Zellen der großen Blutgefäße, wo der Blutfluss schnell und der Blutdruck hoch ist, in großer Menge produziert. Hier sorgt es dafür, dass diese Gefäße stabilisiert werden und keine Änderungen der Blutgefäße erfolgen.

Die Gruppe um Seyfried hat nun in einer neuen Arbeit an Zebrafischembryonen überraschende Hinweise dafür gefunden, wie KLF2 gesteuert wird und dass dieses Protein in Regionen mit schwachem Blutfluss eine komplett gegensätzliche Funktion ausüben kann. „Hier kommen weitere Proteine ins Spiel, nämlich die CCM-Proteine“, so der Forscher.

Cerebral cavernous malformations steckt hinter der Abkürzung CCM. Der Begriff steht für eine seltene Krankheit, in deren Verlauf Patienten charakteristische Veränderungen von Blutgefäßen des Gehirns ausbilden, die als zerebrale kavernöse Malformationen bezeichnet werden. Denn fallen die CCM-Eiweiße aufgrund von Mutationen aus, bilden kleine Kapillaren im Gehirn Wucherungen. Es entstehen brombeerförmige Verwachsungen, die undicht sind, was zu Blutungen führen kann. Schwere neurologische Ausfälle und Schlaganfälle können die Folge sein.

Die Arbeiten am Zebrafisch legen nun nahe, dass CCM-Proteine die Produktion von KLF2 regulieren. „Fehlen CCM-Proteine, wird die Produktion von KLF2 im gesamten Blutgefäßsystem aktiviert, egal ob ein mechanischer Reiz durch Blutfluss vorhanden ist oder nicht“, so Seyfried. Eine große Überraschung dieser Studie ist, dass große Mengen von KLF2 nicht notwendigerweise nur stabilisierend wirken müssen, sondern im Gegenteil, in kleinen Blutgefäßen auch schädigend agieren können: KLF2 treibt dann ein unkontrolliertes Gefäßwachstum an.

Die große Herausforderung liegt nun darin, herauszufinden, auf welche Weise KLF2 diese sehr unterschiedlichen Funktionen in Blutgefäßen ausübt, kommentieren die Forscher. Sie hoffen, dass ein besseres Verständnis dafür, wie normales Blutgefäßwachstum kontrolliert wird, sowohl für zukünftige Behandlungstherapien krankhafter Prozesse als auch für Regenerationsbehandlungen wichtig werden wird.

Die Publikation „Regulation of ß1 Integrin-Klf2-mediated angiogenesis by CCM proteins“ ist online unter www.cell.com/developmental-cell/  verfügbar.

Kontakt: Prof. Dr. Salim Seyfried, Institut für Biochemie und Biologie
Telefon: 0331 977-5540/5541
E-Mail: salim.seyfried@uni-potsdam.de

Medieninformation 27-01-2015 / Nr. 008
Gemeinsame Pressemitteilung der Universität Potsdam und der Medizinischen Hochschule Hannover.
Heike Kampe

Universität Potsdam
Referat Presse- und Öffentlichkeitsarbeit
Am Neuen Palais 10
14469 Potsdam
Tel.: +49 331 977-1665
Fax: +49 331 977-1130
E-Mail: presse@uni-potsdam.de
Internet: www.uni-potsdam.de/presse

Weitere Informationen:

http://www.cell.com/developmental-cell/

Heike Kampe | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Angiogenese Biologie Blutfluss Blutgefäße CCM Mutationen Proteine Zellen genetische Faktoren

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen

Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko

23.03.2017 | Medizin Gesundheit

Die Evolutionsgeschichte der Wespen, Bienen und Ameisen erstmals entschlüsselt

23.03.2017 | Biowissenschaften Chemie