Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Methan nutzen statt abfackeln

14.04.2016

Chemiker an der ETH Zürich und am Paul Scherrer Institut haben einen neuen direkten Weg gefunden, gasförmiges Methan in flüssiges Methanol umzuwandeln. Damit könnte es in Zukunft für die Industrie interessant werden, das Gas vermehrt zu nutzen, statt es wie bisher oft ungenutzt zu verbrennen.

Methan ist ein häufig vorkommendes und billiges Gas. Obschon es als Energieträger und als Ausgangsstoff für die chemische Industrie geeignet wäre, werden weltweit riesige Mengen davon einfach verbrannt – vor allem auf Erdölfeldern und in Raffinerien, wo es unter anderem anfällt.


Weltweit werden derzeit gosse Mengen Methan einfach verbrannt, hier auf einer Ölbohrplattform. (Bild: Colourbox)

«Auf Satellitenaufnahmen der nächtlichen Erde ist der mittlere Osten hell erleuchtet. Und dies nicht etwa, weil es dort besonders viele und grosse beleuchtete Siedlungen gibt, sondern wegen der Methanabfackelung auf den Ölfeldern», sagt Jeroen van Bokhoven, Professor für heterogene Katalyse an der ETH Zürich und Leiter des Labors für Katalyse und nachhaltige Chemie am Paul Scherrer Institut (PSI) in Villigen.

Mit ein Grund für diesen verschwenderischen Umgang mit Methan ist, dass es derzeit wirtschaftlich zu wenig rentabel ist, das Gas in die einfacher zu transportierende und reaktionsfreudigere Flüssigkeit Methanol zu überführen. Im industriellen Massstab wird diese Umwandlung derzeit in einer indirekten, aufwendigen und energieintensiven Methode praktiziert mit der Produktion von Synthesegas als Zwischenschritt.

Traum vieler Chemiker

«Die einfache direkte Umwandlung von Methan in Methanol gilt als die Traumreaktion vieler Chemiker», sagt van Bokhoven. In einer aktuellen Studie zeigen er und sein Team einen neuen Weg dazu auf. Auch die Industrie sei sehr daran interessiert, diesen häufigen und billigen Rohstoff besser zu verwerten, sagt der Katalyseforscher. Wegen der weltweit zunehmenden Förderung von Schiefergas falle zudem immer mehr Methan an.

Zumindest theoretisch ist eine direkte Umwandlung von Methan in Methanol zwar bereits heute möglich. Dies mithilfe von kristallinen kupferhaltigen Silizium-Aluminium-Verbindungen (Zeolithen) als Katalysatoren. Es handelt sich dabei um einen zyklischen Prozess, der bei verschiedenen Temperaturen abläuft: Um den Katalysator zu aktivieren sind sehr hohe Temperaturen nötig, oft bis zu 450 Grad Celsius.

Die eigentliche Reaktion von Methan mit Sauerstoff zu Methanol darf jedoch nicht bei Temperaturen stattfinden, die bedeutend höher sind als 200 Grad, da sonst das entstehende Methanol direkt verbrennen würde. Der Reaktionsbehälter muss daher immer wieder geheizt und gekühlt werden, weshalb es dieser Ansatz nie aus den Forschungslabors hinaus in die Industrie geschafft hat.

Hoher Druck statt hohe Temperatur

Van Bokhoven und seine Kollegen haben nun zeigen können, dass dieser Reaktionszyklus auch bei konstanten 200 Grad stattfinden kann. Sie nutzten dazu einen Trick und verwendeten Methan mit einem sehr viel grösseren Druck: 36 bar statt bisher üblich unter 1 bar. «Die konstante Temperatur macht den Prozess für die Industrie viel einfacher», sagt Patrick Tomkins, Masterstudent in van Bokhovens Gruppe und Erstautor der aktuellen Studie.

Mit Röntgenabsorptionsspektroskopie-Untersuchungen konnten die Forschenden ausserdem zeigen, dass die Reaktion im Katalysator bei der neuen Tieftemperatur-Hochdruck-Methode auf atomarer Ebene nicht an denselben Stellen stattfindet wie bei der bisherigen Hochtemperatur-Methode. «Durch den hohen Druck werden in den Kupfer-Zeolithen andere aktive Zentren genutzt», so van Bokhoven.

Eins zu eins in der Industrie anwendbar sei der neue Ansatz zwar noch nicht, gibt van Bokhoven zu bedenken, da dessen Ausbeute für industrielle Zwecke noch zu gering sei. Doch der Ansatz eröffne ganz neue Möglichkeiten. «Bisher erforschten Katalysewissenschaftler für diese Reaktion vor allem Kupfer-Zeolithe, weil diese in der Hochtemperatur-Methode am erfolgreichsten sind. Auch wir verwendeten für die aktuelle Studie solche Kupfer-Zeolithe».

Da die Hochdruck-Methode auf atomarer Ebene jedoch anders katalysiert werde, lohne es sich nun, auch andere Katalysatoren zu erforschen, solche die bisher gar nicht in Betracht gezogen worden seien, sagt van Bokhoven. Denn möglicherweise seien diese für die Hochdruck-Methode sogar besser geeignet. Genau dies wird der Katalysewissenschaftler und seine Mitarbeiter in weiterer Forschungsarbeit machen, mit dem Ziel sich selbst, der Wissenschaftswelt und der Industrie den Traum einer einfachen, direkten und wirtschaftlichen Umwandlung von Methan in Methanol zu erfüllen.

Literaturhinweis

Tomkins P, Mansouri A, Bozbag SE, Krumeich F, Park MB, Alayon EMC, Ranocchiari M, van Bokhoven JA: Isothermal Cyclic Conversion of Methane into Methanol over Copper-Exchanged Zeolite at Low Temperature, Angewandte Chemie International Edition, 24. März 2016, doi: 10.1002/anie.201511065 [http://dx.doi.org/10.1002/anie.201511065]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/04/methan-nut...

News und Medienstelle | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Studie entschlüsselt neue Diabetes-Gene
22.01.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft
22.01.2018 | Humboldt-Universität zu Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

 
VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
Weitere B2B-VideoLinks
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen