Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meister der Regeneration: Wie Mikrogliazellen das Gehirn im Gleichgewicht halten

24.07.2015

Mainzer Wissenschaftler entschlüsseln wichtige Eigenschaften der Mikroglia

Bestimmte Zellen des Gehirns regenerieren sich unglaublich schnell und effizient: Das haben Wissenschaftler der Universitätsmedizin Mainz unter Federführung des Instituts für Molekulare Medizin herausgefunden. Sie stellten fest, dass sich sogenannte Mikrogliazellen innerhalb einer Woche fast vollständig regenerieren können.

Das Ergebnis legt den Schluss nahe, dass diese Zellen eine essentielle Rolle dabei spielen im Gehirn einen Gleichgewichtszustand – im Fachjargon Homöostase – aufrecht zu erhalten. Die Forschungsergebnisse sind in der aktuellen Ausgabe der renommierten Zeitschrift „Immunity“ veröffentlicht.

Mikrogliazellen sind lokale Immunzellen des Gehirns. Sie stellen die Hauptkomponente der Immunabwehr im Zentralen Nervensystem (ZNS) dar und bilden die erste Verteidigungslinie gegenüber potenziellen Krankheitserregern. Dies ist von großer Bedeutung, da die herkömmlichen ‚Wächter’ des Immunsystems die Blut-Hirn-Schranke nicht ohne weiteres überwinden können.

In ihrer alltäglichen Funktion schützen die Mikroglia dabei aktiv das Nervengewebe und unterstützen dessen Regeneration nach einer Verletzung. Sie erfüllen damit eine ähnliche Funktion wie Makrophagen – auch Fresszellen genannt – in anderen Geweben, weshalb sie auch als Gewebsmakrophagen des ZNS bezeichnet werden.

„Aufgrund dieser elementaren Bedeutung der Mikroglia im Gehirn stehen sie im Fokus unseres wissenschaftlichen Interesses“, erläutert Univ.-Prof. Dr. Ari Waisman, Direktor des Instituts für Molekulare Medizin an der Universitätsmedizin Mainz. „Dies vor allem auch vor dem Hintergrund, dass es erst seit kurzem Methoden und spezifische Marker gibt, die ausschließlich Mikrogliazellen sichtbar machen. Deshalb ist es nun möglich diese Zellen genauer zu charakterisieren.“ So sei beispielsweise bisher nicht bekannt gewesen, wie sich die Gesamtheit der Mikroglia über die gesamte Lebenszeit eines Organismus aufrechterhält.

In der aktuellen Studie gelang es den Mainzer Wissenschaftlern im Tiermodell gezielt Mikrogliazellen zum Absterben zu bringen. Andere Zellen des ZNS wurden hierdurch nicht beeinträchtigt. Die Ergebnisse zeigten eindrucksvoll, dass sich die wenigen übrig gebliebenen Mikroglia durch massive Proliferation – also Zellteilung und Zellwachstum – innerhalb von nur einer Woche wieder vollständig regenerieren konnten.

„Durch dieses hohe Regenerationspotenzial unterscheiden sich Mikroglia stark von den anderen Gehirnzellen, vor allem von Nervenzellen“, so Professor Waisman. „Aus diesem Grund gehen wir davon aus, dass Mikroglia eine essentielle Rolle bei der Aufrechterhaltung eines Gleichgewichtszustands im Gehirn spielen.“ Dieses Gleichgewicht ist enorm wichtig, um eine normale Gehirnleistung zu garantieren und somit auch neurodegenerativen Erkrankungen vorzubeugen.

Über die fundamentale Charakterisierung der Mikroglia hinaus, gelang es den Wissenschaftlern die schnelle Regeneration der Mikroglia noch weiter im Detail zu untersuchen. Dazu haben sie mithilfe modernster Labortechniken – dem sogenannten Next Generation Sequencing – das genetische Profil der Mikroglia entschlüsselt.

Sie fanden heraus, dass die Regeneration dieser Zellen nicht nur von dem bereits bekannten Botenstoff M-CSF (Macophage Colony Stimulating Factor) abhängt, sondern auch der Botenstoff IL-1 (Interleukin-1) eine wichtige Rolle spielt. Interleukin-1 steuert eine Vielzahl entzündlicher Prozesse im Körper, ist darüber hinaus aber auch an der Teilung und Differenzierung von diversen Zelltypen beteiligt. Dass es auch in der Regenation der Mikroglia involviert ist, war unerwartet, deutet aber darauf hin, dass Mikroglia diesen Botenstoff brauchen, um ihre „typische“ Identität während der Regeneration aufrechtzuerhalten.

Originalpublikation:
Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system
Julia Bruttger, Khalad Karram, Simone Wörtge, Tommy Regen, Federico Marini, Nicola Hoppmann, Matthias Klein, Thomas Blank, Simon Yona, Yochai Wolf, Matthias Mack, Emmanuel Pinteaux, Werner Müller, Frauke Zipp, Harald Binder, Tobias Bopp, Marco Prinz, Steffen Jung and Ari Waisman
Immunity, Volume 43, Issue 1, p92–106, 21 July 2015
DOI: http://dx.doi.org/10.1016/j.immuni.2015.06.012

Pressekontakt:
Dr. Renée Dillinger-Reiter, Stabsstelle Kommunikation und Presse Universitätsmedizin Mainz,
Telefon 06131 17-7428, Fax 06131 17-3496, E-Mail: pr@unimedizin-mainz.de

Über die Universitätsmedizin der Johannes Gutenberg-Universität Mainz
Die Universitätsmedizin der Johannes Gutenberg-Universität Mainz ist die einzige medizinische Einrichtung der Supramaximalversorgung in Rheinland-Pfalz und ein international anerkannter Wissenschaftsstandort. Sie umfasst mehr als 60 Kliniken, Institute und Abteilungen, die fächerübergreifend zusammenarbeiten. Hochspezialisierte Patientenversorgung, Forschung und Lehre bilden in der Universitätsmedizin Mainz eine untrennbare Einheit. Rund 3.300 Studierende der Medizin und Zahnmedizin werden in Mainz ausgebildet. Mit rund 7.500 Mitarbeiterinnen und Mitarbeitern ist die Universitätsmedizin zudem einer der größten Arbeitgeber der Region und ein wichtiger Wachstums- und Innovationsmotor.

Weitere Informationen im Internet unter www.unimedizin-mainz.de

Dr. Renée Dillinger-Reiter | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen