Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meister der Regeneration: Wie Mikrogliazellen das Gehirn im Gleichgewicht halten

24.07.2015

Mainzer Wissenschaftler entschlüsseln wichtige Eigenschaften der Mikroglia

Bestimmte Zellen des Gehirns regenerieren sich unglaublich schnell und effizient: Das haben Wissenschaftler der Universitätsmedizin Mainz unter Federführung des Instituts für Molekulare Medizin herausgefunden. Sie stellten fest, dass sich sogenannte Mikrogliazellen innerhalb einer Woche fast vollständig regenerieren können.

Das Ergebnis legt den Schluss nahe, dass diese Zellen eine essentielle Rolle dabei spielen im Gehirn einen Gleichgewichtszustand – im Fachjargon Homöostase – aufrecht zu erhalten. Die Forschungsergebnisse sind in der aktuellen Ausgabe der renommierten Zeitschrift „Immunity“ veröffentlicht.

Mikrogliazellen sind lokale Immunzellen des Gehirns. Sie stellen die Hauptkomponente der Immunabwehr im Zentralen Nervensystem (ZNS) dar und bilden die erste Verteidigungslinie gegenüber potenziellen Krankheitserregern. Dies ist von großer Bedeutung, da die herkömmlichen ‚Wächter’ des Immunsystems die Blut-Hirn-Schranke nicht ohne weiteres überwinden können.

In ihrer alltäglichen Funktion schützen die Mikroglia dabei aktiv das Nervengewebe und unterstützen dessen Regeneration nach einer Verletzung. Sie erfüllen damit eine ähnliche Funktion wie Makrophagen – auch Fresszellen genannt – in anderen Geweben, weshalb sie auch als Gewebsmakrophagen des ZNS bezeichnet werden.

„Aufgrund dieser elementaren Bedeutung der Mikroglia im Gehirn stehen sie im Fokus unseres wissenschaftlichen Interesses“, erläutert Univ.-Prof. Dr. Ari Waisman, Direktor des Instituts für Molekulare Medizin an der Universitätsmedizin Mainz. „Dies vor allem auch vor dem Hintergrund, dass es erst seit kurzem Methoden und spezifische Marker gibt, die ausschließlich Mikrogliazellen sichtbar machen. Deshalb ist es nun möglich diese Zellen genauer zu charakterisieren.“ So sei beispielsweise bisher nicht bekannt gewesen, wie sich die Gesamtheit der Mikroglia über die gesamte Lebenszeit eines Organismus aufrechterhält.

In der aktuellen Studie gelang es den Mainzer Wissenschaftlern im Tiermodell gezielt Mikrogliazellen zum Absterben zu bringen. Andere Zellen des ZNS wurden hierdurch nicht beeinträchtigt. Die Ergebnisse zeigten eindrucksvoll, dass sich die wenigen übrig gebliebenen Mikroglia durch massive Proliferation – also Zellteilung und Zellwachstum – innerhalb von nur einer Woche wieder vollständig regenerieren konnten.

„Durch dieses hohe Regenerationspotenzial unterscheiden sich Mikroglia stark von den anderen Gehirnzellen, vor allem von Nervenzellen“, so Professor Waisman. „Aus diesem Grund gehen wir davon aus, dass Mikroglia eine essentielle Rolle bei der Aufrechterhaltung eines Gleichgewichtszustands im Gehirn spielen.“ Dieses Gleichgewicht ist enorm wichtig, um eine normale Gehirnleistung zu garantieren und somit auch neurodegenerativen Erkrankungen vorzubeugen.

Über die fundamentale Charakterisierung der Mikroglia hinaus, gelang es den Wissenschaftlern die schnelle Regeneration der Mikroglia noch weiter im Detail zu untersuchen. Dazu haben sie mithilfe modernster Labortechniken – dem sogenannten Next Generation Sequencing – das genetische Profil der Mikroglia entschlüsselt.

Sie fanden heraus, dass die Regeneration dieser Zellen nicht nur von dem bereits bekannten Botenstoff M-CSF (Macophage Colony Stimulating Factor) abhängt, sondern auch der Botenstoff IL-1 (Interleukin-1) eine wichtige Rolle spielt. Interleukin-1 steuert eine Vielzahl entzündlicher Prozesse im Körper, ist darüber hinaus aber auch an der Teilung und Differenzierung von diversen Zelltypen beteiligt. Dass es auch in der Regenation der Mikroglia involviert ist, war unerwartet, deutet aber darauf hin, dass Mikroglia diesen Botenstoff brauchen, um ihre „typische“ Identität während der Regeneration aufrechtzuerhalten.

Originalpublikation:
Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system
Julia Bruttger, Khalad Karram, Simone Wörtge, Tommy Regen, Federico Marini, Nicola Hoppmann, Matthias Klein, Thomas Blank, Simon Yona, Yochai Wolf, Matthias Mack, Emmanuel Pinteaux, Werner Müller, Frauke Zipp, Harald Binder, Tobias Bopp, Marco Prinz, Steffen Jung and Ari Waisman
Immunity, Volume 43, Issue 1, p92–106, 21 July 2015
DOI: http://dx.doi.org/10.1016/j.immuni.2015.06.012

Pressekontakt:
Dr. Renée Dillinger-Reiter, Stabsstelle Kommunikation und Presse Universitätsmedizin Mainz,
Telefon 06131 17-7428, Fax 06131 17-3496, E-Mail: pr@unimedizin-mainz.de

Über die Universitätsmedizin der Johannes Gutenberg-Universität Mainz
Die Universitätsmedizin der Johannes Gutenberg-Universität Mainz ist die einzige medizinische Einrichtung der Supramaximalversorgung in Rheinland-Pfalz und ein international anerkannter Wissenschaftsstandort. Sie umfasst mehr als 60 Kliniken, Institute und Abteilungen, die fächerübergreifend zusammenarbeiten. Hochspezialisierte Patientenversorgung, Forschung und Lehre bilden in der Universitätsmedizin Mainz eine untrennbare Einheit. Rund 3.300 Studierende der Medizin und Zahnmedizin werden in Mainz ausgebildet. Mit rund 7.500 Mitarbeiterinnen und Mitarbeitern ist die Universitätsmedizin zudem einer der größten Arbeitgeber der Region und ein wichtiger Wachstums- und Innovationsmotor.

Weitere Informationen im Internet unter www.unimedizin-mainz.de

Dr. Renée Dillinger-Reiter | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Wirkmechanismus von Tumortherapeutikum entdeckt
19.04.2018 | Universität Wien

nachricht Krebsmedikament bei der Arbeit beobachtet
19.04.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Im Focus: Basler Forschern gelingt die Züchtung von Knorpel aus Stammzellen

Aus Stammzellen aus dem Knochenmark von Erwachsenen lassen sich stabile Gelenkknorpel herstellen. Diese Zellen können so gesteuert werden, dass sie molekulare Prozesse der embryonalen Entwicklung des Knorpelgewebes durchlaufen, wie Forschende des Departements Biomedizin von Universität und Universitätsspital Basel im Fachmagazin PNAS berichten.

Bestimmte mesenchymale Stamm-/Stromazellen aus dem Knochenmark von Erwachsenen gelten als äusserst viel versprechend für die Regeneration von Skelettgewebe....

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

Stralsunder IT-Sicherheitskonferenz im Mai zum 7. Mal an der Hochschule Stralsund

12.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungsnachrichten

Aus dem Labor auf die Schiene: Forscher des HI-ERN planen Wasserstoffzüge mit LOHC-Technologie

19.04.2018 | Verkehr Logistik

Neuer Wirkmechanismus von Tumortherapeutikum entdeckt

19.04.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics