Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehltau in der Sackgasse

10.12.2010
Der Pflanzenschädling besitzt nur noch die Gene, die für sein Parasitendasein nötig sind

Die Größe eines Erbguts sagt nichts über die Reichhaltigkeit der darin enthaltenen genetischen Information aus. Ein Beispiel dafür ist der Echte Mehltau, der ganze Ernten durch feine Pilzfäden vernichtet. Der Pflanzenschädling hat zwar annähernd 120 Millionen Basenpaare und damit eines der größten Genome unter den Schlauchpilzen, aber mit nur knapp 6.000 weitaus weniger Gene. Viele Gene, die für einen unabhängigen Stoffwechsel nötig sind und die andere Pilze noch besitzen, sind ihm abhanden gekommen. Genetisch gesehen steckt der Mehltau damit in einer Sackgasse der Evolution, aus der er sich auch nicht mehr befreien kann. (Science, 10. Dezember 2010)


Die Abbildung zeigt einen Ausschnitt eines Mehltau-infizierten Gerste-Blattes. Die weißlichen Pilz-Kolonien auf der Blattoberfläche stellen die typischen Krankheitssymptome dieser weitverbreiteten Pflanzen-Krankheit dar. Bild: Anja Reinstädler / MPI für Pflanzenzüchtungsforschung

Dass Mehltau während der Evolution einen Großteil seiner genetischen Komplexität eingebüßt hat, haben Ralph Panstruga vom Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln und Kollegen eines internationalen Konsortiums durch den Vergleich von Pilzgenomen herausgefunden. Die beträchtliche Genomgröße des Mehltaus geht im Wesentlichen auf sogenannte "springende Gene" zurück. Sie bringen neue Sequenzen ins Genom ein und mischen das Erbgut immer wieder auf, indem sie sich ein- und ausbauen und dabei Fehler machen. Durch diese Umwälzungen hat der Mehltaupilz zwar eine beträchtliche Zahl an neuen Basenpaaren hinzugewonnen, gleichzeitig aber auch viele Gene verloren, weil deren Leseraster durch den Einbau des springenden Gens unterbrochen wurde.

Wie das internationale Konsortium zeigen konnte, fehlen dem Pflanzenschädling 99 Gene für eine unabhängige Lebensweise, die die Bäckerhefe, die ebenfalls zu den Schlauchpilzen zählt, noch besitzt. Dadurch kann der Mehltaupilz weder Stickstoff fixieren, noch Energie aus einer Gärung gewinnen oder bestimmte Stoffwechselprodukte aus anorganischen Verbindungen herstellen. Als Parasit braucht der Mehltaupilz diese Syntheseleistungen allerdings auch nicht mehr. Er holt sich alles, was nötig ist, von der Wirtspflanze. Panstruga: "Er kann auf diese Gene verzichten. Allerdings zu dem Preis, dass er auf eine einzige Lebensform festgelegt ist, den Parasitismus. Es gibt keinen Weg mehr zurück zu einer unabhängigen Lebensweise. Das besagt auch das Dollo Gesetz: Verloren gegangene genetische Komplexität kann nicht zurückgewonnen werden. Ausgestorbene Arten können daher auch nicht mehr aus den vorhandenen Genomen neu erfunden werden."

Dem Mehltaupilz fehlen auch viele Gene für den Angriff auf die Pflanzenzelle. Er produziert zum Beispiel nur ein paar Transportproteine. Andere Pflanzenschädlinge stellen eine ganze Kollektion her. Sie schleusen damit Gifte in die Pflanzenzelle ein oder pumpen die Proteine der pflanzlichen Abwehr nach draußen, so dass sie ihnen nicht mehr gefährlich werden können. Der Mehltaupilz bildet auch kaum Enzyme, mit denen die pflanzliche Zellwand durchlöchert und passierbar gemacht werden kann. Panstruga: "Dem Mehltau fehlt offensichtlich die genetische Ausstattung für den groben Angriff auf die Pflanzenzelle. Seine Strategie ist die des leisen Zutritts. Er versucht, dem pflanzlichen Immunsystem keine Gelegenheit für eine Abwehrreaktion zu geben. Auch das passt zu seiner parasitischen Lebensweise. Der Mehltaupilz hat kein Interesse am Untergang der Wirtspflanze. Ihm geht es um die subtile und nachhaltige Unterwerfung seines Wirtes."

Für diese Unterwerfung verwendet der Gersten-Mehltau gerade einmal vier Prozent seiner genetischen Ausstattung. Die Kölner Wissenschaftler haben nur 248 Gene identifiziert, die für eine solche Aufgabe in Frage kommen. Der Vergleich mit anderen Mehltau-Arten - etwa der von Erbse oder Arabidopsis - hat gezeigt, dass sich die drei Arten nur sieben dieser Gene teilen. Alle anderen sind auf den Gesten-Mehltau beschränkt. Diese Exklusivität zeigt, dass sich die genetische Ausstattung für das Parasitendasein in enger Anlehnung an die jeweilige Wirtspflanze entwickelt hat. Die übrigen Mehltau-Arten haben offensichtlich andere genetische Lösungen gefunden.

Originalveröffentlichung:

Spanu PD et al.
Genome expansion and gene loss in powdery mildew fungi reveal functional tradeoffs in extreme parasitism

Science, 10. Dezember 2010

Weitere Informationen erhalten Sie von:

Dr. Ralph Panstruga
Max-Planck-Institut für Pflanzenzüchtungsforschung, Köln
Tel.: +49 221 5062-316
E-Mail: panstrug@mpiz-koeln.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie