Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mechanismus zur Reparatur von verklumpten Proteinen aufgeklärt

19.11.2012
Heidelberger Wissenschaftler entschlüsseln die Funktion bestimmter molekularer Chaperone

Verklumpte Proteine können mit Hilfe zellulärer Reparatursysteme aufgelöst werden – ein Prozess, der für das Überleben von Zellen gerade unter Stressbedingungen von vitaler Bedeutung ist. Der fundamentale Mechanismus zur Auflösung von Proteinaggregaten, bei dem bestimmte molekulare Chaperone zum Einsatz kommen, ist jetzt von Heidelberger Wissenschaftlern entschlüsselt worden.


Mechanismus der Proteinaggregatauflösung durch Hsp70/Hsp100 Kooperation. Das ringförmige Hsp100 liegt in zwei Strukturzuständen vor, einem inaktiven und einem aktivierten Zustand. Ein molekularer Schalthebel hält das Hsp100 Chaperon im inaktiven Zustand. Durch Interaktion mit Hsp70 wird die Stellung des Schalters verändert und das Hsp100 Chaperon aktiviert. In diesem Zustand kann es Proteinstränge aus dem Aggregat herausziehen. Die Aktvierung von Hsp100 ist nicht von Dauer, so dass das Chaperon nach der Aggregatauflösung wieder in den inaktiven Zustand zurückfällt.

Abbildung: ZMBH

Beteiligt waren Forscher des Zentrums für Molekulare Biologie der Universität Heidelberg und des Deutschen Krebsforschungszentrums, die mit Experten des Heidelberger Instituts für Theoretische Studien zusammengearbeitet haben. Die Forschungsergebnisse wurden in zwei zeitgleich erscheinenden Arbeiten in der Fachzeitschrift „Nature Structural & Molecular Biology“ veröffentlicht.

Proteine bestehen aus langen Ketten aufeinanderfolgender Aminosäuren und üben lebensnotwendige Funktionen in jeder Zelle aus. Um Funktionalität zu erreichen, muss zunächst jede Aminosäurekette eine bestimmte dreidimensionale Struktur einnehmen – sie muss sich falten. Eine Änderung der Wachstumsbedingungen wie zum Beispiel ein Anstieg der Umgebungstemperatur kann dazu führen, dass Proteine ihre Struktur verlieren und sich entfalten. Dabei besteht die Gefahr, dass entfaltete Proteinketten miteinander verklumpen und Proteinaggregate bilden. „Kommt es zur Bildung solcher Aggregate, hat dies den Funktionsverlust der Proteine zur Folge und kann zum Zelltod führen, wie dies bei neurodegenerativen Erkrankungen, etwa Alzheimer und Parkinson, oder auch bei Alterungsvorgängen der Fall ist“, so Prof. Dr. Bernd Bukau, der Direktor des Zentrums für Molekulare Biologie der Universität Heidelberg (ZMBH) ist und zugleich am Deutschen Krebsforschungszentrum (DKFZ) forscht.

Eine Verklumpung muss jedoch nicht unbedingt den Endpunkt im Lebenszyklus eines Proteins darstellen. „Zellen besitzen Reparatursysteme für beschädigte Proteine, sogenannte molekulare Chaperone, die sogar aggregierte Proteine auflösen und zurückfalten können“, erläutert Privatdozent Dr. Axel Mogk, der ebenfalls dem ZMBH und dem DKFZ angehört. Die „Reparatur“ wird durch ein kooperierendes Team von zwei Chaperonen – der französische Ausdruck für „Anstandsdame“ – mit den Bezeichnungen Hsp70 und Hsp100 bewerkstelligt. Die Heidelberger Wissenschaftler konnten nun zeigen, dass die Aktivität des Hsp100-Chaperons durch einen eingebauten molekularen Schalter reguliert wird.

Dieser Schalter ist zunächst so positioniert, dass er den Energieverbrauch, das heißt die ATP-Hydrolyse, und damit die Aktivität des Hsp100-Chaperons drosselt. Das kooperierende Hsp70-Protein verändert die Stellung des Schalters und aktiviert Hsp100 direkt am Proteinaggregat. In diesem Zustand läuft der „Motor“ des ringförmigen Hsp100-Proteins auf vollen Touren, entwickelt seine komplette Leistungsfähigkeit und kann einzelne Ketten aus dem Aggregat herausziehen. Das herausgelöste, entfaltete Protein hat danach wieder die Chance, die Faltung von vorne zu beginnen. Die Heidelberger Forschungsergebnisse zeigen außerdem, dass die Aktivitätskontrolle von Hsp100 durch den eingebauten Schalter von essentieller Bedeutung für diese komplizierte Proteinmaschine ist, da der Regulationsverlust in hyperaktiven – also permanent aktivierten – Hsp100-Proteinvarianten zum Zelltod führt.

Die Forschungsarbeiten sind Teil der DKFZ-ZMBH-Allianz, der strategischen Zusammenarbeit des Deutschen Krebsforschungszentrums und des Zentrums für Molekulare Biologie der Universität Heidelberg. Am Heidelberger Institut für Theoretische Studien (HITS) werden neue theoretische Ansätze zur Interpretation der rasch wachsenden Menge experimenteller Daten entwickelt.

Originalveröffentlichungen:

F. Seyffer, E. Kummer, Y. Oguchi, J. Winkler, M. Kumar, R. Zahn, V. Sourjik, B. Bukau & A. Mogk: Hsp70 proteins bind Hsp100 regulatory M domains to activate AAA+ disaggregase at aggregate surfaces, Nature Structural & Molecular Biology, 18 November 2012, doi: 10.1038/nsmb.2442

Y. Oguchi, E. Kummer, F. Seyffer, M. Berynskyy, B. Anstett, R. Zahn, R.C. Wade, A. Mogk & B. Bukau: A tightly regulated molecular toggle controls AAA+ disaggregase, Nature Structural & Molecular Biology, 18 November 2012, doi: 10.1038/nsmb.2441

Kontakt:

Prof. Dr. Bernd Bukau, Privatdozent Dr. Axel Mogk
Zentrum für Molekulare Biologie der Universität Heidelberg
Telefon (06221) 54-6850, direktor@zmbh.uni-heidelberg.de
Telefon (06221) 54-6863, a.mogk@zmbh.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie