Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mechanismus aufgeklärt: Wie Enzyme Wasserstoff produzieren

20.07.2017

Den entscheidenden Katalyseschritt bei der Wasserstoffproduktion durch Enzyme haben Forscher der Ruhr-Universität Bochum und der Freien Universität Berlin aufgeklärt. Die Enzyme, sogenannte Hydrogenasen, setzen Elektronen und Protonen effizient zu Wasserstoff um. Sie sind daher ein Kandidat für die biotechnologische Herstellung des potenziellen Energieträgers. „Um Wasserstoff in industriellem Maßstab mithilfe von Enzymen zu erzeugen, müssen wir deren Funktionsweise genau verstehen“, sagt Prof. Dr. Thomas Happe, einer der Autoren der Studie.

Das Team um Happe und Dr. Martin Winkler von der Bochumer Arbeitsgruppe für Photobiotechnologie berichtet über die Ergebnisse mit Berliner Kollegen um Dr. Sven Stripp in der Zeitschrift Nature Communications.


Aufgeklärter Reaktionsmechanismus (siehe Haupttext für ausführliche Bildunterschrift)

© Martin Winkler


Martin Winkler (rechts) und Thomas Happe (links) haben einen flüchtigen Zwischenzustand eines Enzyms dingfest gemacht.

© RUB, Marquard

Enzym arbeitet in zwei Richtungen

Hydrogenasen können in zwei Richtungen arbeiten: Sie setzen Protonen und Elektronen zu Wasserstoff um oder spalten Wasserstoff in Protonen und Elektronen. Diese Reaktionen finden an dem aktiven Zentrum der Hydrogenase statt, das eine komplexe Struktur aus sechs Eisen- und sechs Schwefelatomen ist, genannt H-Cluster. Während des Katalyseprozesses durchläuft dieser Cluster mehrere Zwischenzustände.

Bei der Spaltung von molekularem Wasserstoff (H2) bindet das Wasserstoffmolekül zunächst an den H-Cluster. „Hydrogenase-Forscher waren von jeher davon überzeugt, dass im ersten Reaktionsschritt eine ungleichmäßige Spaltung von H2 erfolgen müsse“, erklärt Martin Winkler.

Die Idee: Es entsteht ein positiv geladenes Proton (H+) und ein negativ geladenes Hydrid-Ion (H-), die dann schnell zu zwei Protonen und zwei Elektronen weiterreagieren. „Der Hydrid-Zustand des aktiven Enzyms, in dem also das Hydrid-Ion an das aktive Zentrum gebunden ist, gilt als hochgradig instabil – nachweisen konnte ihn bislang niemand“, so Winkler. Genau das gelang den Forschern nun.

Trick macht instabilen Zustand sichtbar

Mit einem Trick reicherten sie den H-Cluster-Zustand mit dem Hydrid-Ion an, sodass er sich spektroskopisch nachweisen ließ. Während der Wasserstoffspaltung stellt sich ein chemisches Gleichgewicht zwischen den beteiligten Reaktionspartnern – Protonen, Hydrid-Ionen und Wasserstoffmoleküle – ein.

Im Gleichgewicht liegen stabile Konzentrationen der drei Wasserstoffzustände vor. Indem die Forscher von außen große Mengen an Protonen und Wasserstoff zu dem Gemisch hinzugaben, verschoben sie das Gleichgewicht – zugunsten der Hydrid-Produktion. Das aktive Zentrum mit dem negativ geladenen Hydrid-Ion reicherte sich nun in größerer Menge an; genug, um messbar zu sein.

Den Hydrid-Zwischenzustand, der auch bei der Wasserstoffproduktion entsteht, wies das Team auch noch in weiteren Versuchen mit gezielt veränderten Hydrogenasen nach.

„So konnten wir das Katalyseprinzip dieser Hydrogenasen erstmals experimentell belegen“, resümiert Thomas Happe. „Das liefert eine entscheidende Grundlage, um den hochgradig effektiven Umsatzmechanismus des H-Clusters für die industrielle Erzeugung von Wasserstoff zu reproduzieren.“ Die Enzyme können bis zu 10.000 Wasserstoffmoleküle pro Sekunde umsetzen.

Förderung

Die Forscher erhielten finanzielle Unterstützung von der Volkswagen-Stiftung (LigH2t) und von der Deutschen Forschungsgemeinschaft im Rahmen des Exzellenzclusters Resolv (EXC1069).

Originalveröffentlichung

Martin Winkler, Moritz Senger, Jifu Duan, Julian Esselborn, Florian Wittkamp, Eckhard Hofmann, Ulf-Peter Apfel, Sven Timo Stripp, Thomas Happe: Accumulating the hydride state in the catalytic cycle of [FeFe]-Hydrogenases, Nature Communications, 2017, DOI: 10.1038/NCOMMS16115

Pressekontakt

Prof. Dr. Thomas Happe
Arbeitsgruppe Photobiotechnologie
Lehrstuhl Biochemie der Pflanzen
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 27026
E-Mail: thomas.happe@rub.de


Erklärung zu der beigefügten Grafik des Reaktionsmechanismus:

A: Am H-Cluster können Elektronen (e-) und Protonen (H+) zu molekularem Wasserstoff (H2) umgesetzt werden oder Wasserstoff in Elektronen und Protonen gespalten werden. B: Forscher gehen davon aus, dass die Hydrogenase vier Zustände in einem Reaktionszyklus durchläuft (durch die Ziffern 1 bis 4 gekennzeichnet). Zustand 2 ist der wichtigste Zwischenzustand: Wasserstoff (H2) wird ungleichmäßig in H+ und H- gespalten. Das Hydrid-Ion (H-) ist an das Enzym gebunden. Da Zustand 2 sehr instabil ist, reagiert er umgehend weiter zu 3 und 4 und konnte im Gegensatz zu den Zuständen 1, 3 und 4 bisher noch nicht nachgewiesen werden. C: Um Zustand 2 nachzuweisen, wurde das chemische Gleichgewicht zugunsten dieses Zustands verschoben, indem die Konzentrationen des Wasserstoffs und der Protonen erhöht wurden (rote Pfeile).

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften