Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MDC-Forscher gewinnen neue Erkenntnisse über Epilepsie

21.03.2014

So wie einzelne Orchestermusiker zum Klang eines Musikstücks beitragen, gestalten unterschiedliche Nervenzelltypen in unserem Gehirn die Sinfonie unseres Bewusstseins. Sie regulieren und koordinieren die Aktivität von Nervenzellgruppen, die Teilinformationen repräsentieren und gegebenenfalls an andere Hirnareale weiterleiten. Gerät dieses System aus dem Gleichgewicht, können Krankheiten entstehen.

Prof. Jochen Meier vom Max-Delbrück-Centrum (MDC) untersucht solche Prozesse. Er hat jetzt mit seinen Kollegen neue Erkenntnisse über die Epilepsie gewonnen und gezeigt, weshalb es zu unterschiedlichen Symptomen der Erkrankung kommen kann (Journal of Clinical Investigation, doi:10.1172/JC171472)*.


Nervenzellen, die den veränderten Glycinrezeptor herstellen, haben einen zusätzlichen Genabschnitt eingeschleust bekommen, der für ein Fluoreszenzprotein kodiert und sie aufleuchten lässt (lila).

(Photo: Jochen Meier/ Copyright: MDC)

Im Mittelpunkt dieser Arbeit steht der so genannte Glycinrezeptor. Er ist als hemmender Neurotransmitter-Rezeptor aus früheren Studien der Rückenmarkforschung bekannt. Vor einigen Jahren konnte die Forschergruppe des Neurobiologen zeigen, dass dieser Rezeptor bei Patienten mit therapieresistenter Temporallappenepilepsie, einer der häufigsten Formen der Epilepsie, molekular verändert ist.

Der veränderte Rezeptor kommt verstärkt im Hippocampus vor, einer Region im Gehirn, die bei den meisten Patienten im späteren Krankheitsverlauf Anfälle auslöst. 

Prof. Meier, der am MDC eine Helmholtz-Nachwuchsgruppe leitet, erklärt, dass Epilepsie nicht ausschließlich vererbt wird, also nicht unbedingt genetisch bedingt sein muss. Tatsächlich weist eine Vielzahl neuerer Forschungsdaten darauf hin, dass verschiedene Umweltfaktoren, einschließlich chronischem Stress, epileptische Anfälle auslösen können.

Möglicherweise ändern dabei molekulare und zelluläre Mechanismen die Anpassungsfähigkeit (Plastizität) von Nervenzellen derart, dass das betroffene Gewebe nicht mehr in der Lage ist, den Normalzustand wieder herzustellen, wodurch sich die chronische Krankheit Epilepsie ausprägen kann. Das mag auch ein Grund dafür sein, dass diese Erkrankung von Patient zu Patient unterschiedlich verläuft.

Die molekulare Veränderung des Glycinrezeptors im geschädigten Gewebe von Epilepsiepatienten kommt durch einen Prozess zustande, den die Forschung als „RNA-Editierung“ bezeichnet. Dabei werden beim Umschreiben der in den Genen enthaltenen DNA-Textbausteine in RNA einzelne Buchstaben durch andere ersetzt.

Verantwortlich für diese Textveränderung (Editieren/Redigieren) sind Enzyme. Das Ergebnis ist, dass der in DNA verfasste Ursprungstext nicht mehr deckungsgleich mit der RNA ist, der Sprache, die den Code für die Textbausteine der Proteine enthält. Das Protein, in diesem Fall der Glycinrezeptor, wird so verändert, dass er einen Funktionszugewinn erfährt, also wesentlich effektiver arbeitet als sein nicht-editiertes Pendant.

Um herauszufinden, was dieser veränderte Glycinrezeptor an welchen Nervenzellen bewirkt, haben Dr. Aline Winkelmann und Prof. Meier zusammen mit Kollegen aus Israel und verschiedenen deutschen Universitäten ein neues Tiermodell der Epilepsie entwickelt. Damit konnten sie diesen Rezeptor gezielt in ausgewählten Nervenzelltypen des Hippocampus anschalten und untersuchen, wie er sich auf kognitive Fähigkeiten und Gemütszustände auswirkt. 

Sie fanden heraus, dass der durch RNA-Editierung veränderte Rezeptor an den Präsynapsen, also den synaptischen Endknöpfchen, die elektrische Impulse durch die Freisetzung eines Neurotransmitters an andere Nervenzellen weitergeben, gebildet wird. Dadurch verstärkte sich die Funktion der ausgewählten Nervenzelltypen, wodurch das ganze System der neuronalen Kommunikation aus dem Gleichgewicht geriet. Je nachdem ob erregend oder hemmend wirkende Nervenzellen den Rezeptor anschalteten, waren die Mäuse in ihren kognitiven Fähigkeiten einschließlich Gedächtnisbildung eingeschränkt oder zeigten vermehrt Angstzustände.

„Unser neues Tiermodell legt nahe, dass dasselbe Molekül zu den vielseitigen Symptomen – kognitive Dysfunktion (Beeinträchtigung der Hirnleistung) oder Angst – von Epilepsiepatienten beitragen kann, je nachdem in welchem Nervenzelltyp es vorkommt“, erläutert Prof. Meier. Er und seine Kollegen haben damit einen Krankheitsmechanismus aufgedeckt, von dem sie hoffen, dass er neue Wege für die Entwicklung gezielter Therapien für Epilepsiepatienten eröffnet.

„Wir müssen jedoch auch noch den Dirigenten der verstimmten molekularen Komponenten des zellulären Orchesters ausfindig machen, der den veränderten Rezeptor bei Epilepsiepatienten anschaltet und damit die Krankheitssymptome letztlich verursacht“, betont Prof. Meier.

*Changes in neural network homeostasis trigger neuropsychiatric symptoms

Aline Winkelmann,1,2 Nicola Maggio,3 Joanna Eller,4 Gürsel Caliskan,5 Marcus Semtner,2 Ute Häussler,6 René Jüttner,7 Tamar Dugladze,4 Birthe Smolinsky,8 Sarah Kowalczyk,8 Ewa Chronowska,9 Günter Schwarz,8 Fritz G. Rathjen,7 Gideon Rechavi,10 Carola A. Haas,6,11 Akos Kulik,9,12 Tengis Gloveli,4,13 Uwe Heinemann,5 and Jochen C. Meier2

1FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany. 2RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany. 3Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel. 4Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany. 5CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany. 6Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany. 7Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany. 8Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany. 9Department of Physiology II, University of Freiburg, Freiburg, Germany. 10Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. 11BrainLinks-BrainTools, Cluster of Excellence and 12BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany. 13Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.

Kontakt:
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/

Weitere Informationen:

http://www.mdc-berlin.de/meier

Barbara Bachtler | Max-Delbrück-Centrum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzen gegen Staunässe schützen
17.10.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Erweiterung des Lichtwegs macht winzige Strukturen in Körperzellen sichtbar
17.10.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz