Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MDC-Forscher gewinnen neue Erkenntnisse über Epilepsie

21.03.2014

So wie einzelne Orchestermusiker zum Klang eines Musikstücks beitragen, gestalten unterschiedliche Nervenzelltypen in unserem Gehirn die Sinfonie unseres Bewusstseins. Sie regulieren und koordinieren die Aktivität von Nervenzellgruppen, die Teilinformationen repräsentieren und gegebenenfalls an andere Hirnareale weiterleiten. Gerät dieses System aus dem Gleichgewicht, können Krankheiten entstehen.

Prof. Jochen Meier vom Max-Delbrück-Centrum (MDC) untersucht solche Prozesse. Er hat jetzt mit seinen Kollegen neue Erkenntnisse über die Epilepsie gewonnen und gezeigt, weshalb es zu unterschiedlichen Symptomen der Erkrankung kommen kann (Journal of Clinical Investigation, doi:10.1172/JC171472)*.


Nervenzellen, die den veränderten Glycinrezeptor herstellen, haben einen zusätzlichen Genabschnitt eingeschleust bekommen, der für ein Fluoreszenzprotein kodiert und sie aufleuchten lässt (lila).

(Photo: Jochen Meier/ Copyright: MDC)

Im Mittelpunkt dieser Arbeit steht der so genannte Glycinrezeptor. Er ist als hemmender Neurotransmitter-Rezeptor aus früheren Studien der Rückenmarkforschung bekannt. Vor einigen Jahren konnte die Forschergruppe des Neurobiologen zeigen, dass dieser Rezeptor bei Patienten mit therapieresistenter Temporallappenepilepsie, einer der häufigsten Formen der Epilepsie, molekular verändert ist.

Der veränderte Rezeptor kommt verstärkt im Hippocampus vor, einer Region im Gehirn, die bei den meisten Patienten im späteren Krankheitsverlauf Anfälle auslöst. 

Prof. Meier, der am MDC eine Helmholtz-Nachwuchsgruppe leitet, erklärt, dass Epilepsie nicht ausschließlich vererbt wird, also nicht unbedingt genetisch bedingt sein muss. Tatsächlich weist eine Vielzahl neuerer Forschungsdaten darauf hin, dass verschiedene Umweltfaktoren, einschließlich chronischem Stress, epileptische Anfälle auslösen können.

Möglicherweise ändern dabei molekulare und zelluläre Mechanismen die Anpassungsfähigkeit (Plastizität) von Nervenzellen derart, dass das betroffene Gewebe nicht mehr in der Lage ist, den Normalzustand wieder herzustellen, wodurch sich die chronische Krankheit Epilepsie ausprägen kann. Das mag auch ein Grund dafür sein, dass diese Erkrankung von Patient zu Patient unterschiedlich verläuft.

Die molekulare Veränderung des Glycinrezeptors im geschädigten Gewebe von Epilepsiepatienten kommt durch einen Prozess zustande, den die Forschung als „RNA-Editierung“ bezeichnet. Dabei werden beim Umschreiben der in den Genen enthaltenen DNA-Textbausteine in RNA einzelne Buchstaben durch andere ersetzt.

Verantwortlich für diese Textveränderung (Editieren/Redigieren) sind Enzyme. Das Ergebnis ist, dass der in DNA verfasste Ursprungstext nicht mehr deckungsgleich mit der RNA ist, der Sprache, die den Code für die Textbausteine der Proteine enthält. Das Protein, in diesem Fall der Glycinrezeptor, wird so verändert, dass er einen Funktionszugewinn erfährt, also wesentlich effektiver arbeitet als sein nicht-editiertes Pendant.

Um herauszufinden, was dieser veränderte Glycinrezeptor an welchen Nervenzellen bewirkt, haben Dr. Aline Winkelmann und Prof. Meier zusammen mit Kollegen aus Israel und verschiedenen deutschen Universitäten ein neues Tiermodell der Epilepsie entwickelt. Damit konnten sie diesen Rezeptor gezielt in ausgewählten Nervenzelltypen des Hippocampus anschalten und untersuchen, wie er sich auf kognitive Fähigkeiten und Gemütszustände auswirkt. 

Sie fanden heraus, dass der durch RNA-Editierung veränderte Rezeptor an den Präsynapsen, also den synaptischen Endknöpfchen, die elektrische Impulse durch die Freisetzung eines Neurotransmitters an andere Nervenzellen weitergeben, gebildet wird. Dadurch verstärkte sich die Funktion der ausgewählten Nervenzelltypen, wodurch das ganze System der neuronalen Kommunikation aus dem Gleichgewicht geriet. Je nachdem ob erregend oder hemmend wirkende Nervenzellen den Rezeptor anschalteten, waren die Mäuse in ihren kognitiven Fähigkeiten einschließlich Gedächtnisbildung eingeschränkt oder zeigten vermehrt Angstzustände.

„Unser neues Tiermodell legt nahe, dass dasselbe Molekül zu den vielseitigen Symptomen – kognitive Dysfunktion (Beeinträchtigung der Hirnleistung) oder Angst – von Epilepsiepatienten beitragen kann, je nachdem in welchem Nervenzelltyp es vorkommt“, erläutert Prof. Meier. Er und seine Kollegen haben damit einen Krankheitsmechanismus aufgedeckt, von dem sie hoffen, dass er neue Wege für die Entwicklung gezielter Therapien für Epilepsiepatienten eröffnet.

„Wir müssen jedoch auch noch den Dirigenten der verstimmten molekularen Komponenten des zellulären Orchesters ausfindig machen, der den veränderten Rezeptor bei Epilepsiepatienten anschaltet und damit die Krankheitssymptome letztlich verursacht“, betont Prof. Meier.

*Changes in neural network homeostasis trigger neuropsychiatric symptoms

Aline Winkelmann,1,2 Nicola Maggio,3 Joanna Eller,4 Gürsel Caliskan,5 Marcus Semtner,2 Ute Häussler,6 René Jüttner,7 Tamar Dugladze,4 Birthe Smolinsky,8 Sarah Kowalczyk,8 Ewa Chronowska,9 Günter Schwarz,8 Fritz G. Rathjen,7 Gideon Rechavi,10 Carola A. Haas,6,11 Akos Kulik,9,12 Tengis Gloveli,4,13 Uwe Heinemann,5 and Jochen C. Meier2

1FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany. 2RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany. 3Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel. 4Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany. 5CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany. 6Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany. 7Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany. 8Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany. 9Department of Physiology II, University of Freiburg, Freiburg, Germany. 10Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. 11BrainLinks-BrainTools, Cluster of Excellence and 12BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany. 13Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.

Kontakt:
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/

Weitere Informationen:

http://www.mdc-berlin.de/meier

Barbara Bachtler | Max-Delbrück-Centrum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
25.05.2018 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics