Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MDC- und FMP-Forscher entdecken Hemmstoff für Ödeme

05.04.2013
Forscher des Max-Delbrück-Centrums (MDC) Berlin-Buch und des Leibniz-Instituts für Molekulare Pharmakologie (FMP) haben jetzt eine Substanz entdeckt, die die Wassereinlagerung in Körpergewebe und damit die Bildung von Ödemen verhindern kann.

Die Ergebnisse von Dr. Jana Bogum (MDC/FMP) aus der MDC-Forschungsgruppe von Prof. Walter Rosenthal und PD Dr. Enno Klußmann könnten künftig für die Behandlung exzessiver Wassereinlagerungen bei Patienten mit Herzschwäche (Herzinsuffizienz) von Bedeutung sein. Zugleich haben die Forscher einen neuen molekularen Regulierungsmechanismus des Wasserhaushalts in der Niere entdeckt (Journal of the American Society of Nephrology, doi:10.1681/ASN.2012030295)*.


Graphik einer Nierenzelle mit Wasserkanälen (Aquaporin-2, AQP2) in der Zelle (linke Abbildung) und mit Aquaporin-2 in der Plasmamembran (rechte Abbildung, oben). Die Wasserkanäle werden zum Beispiel bei Durst durch das Hormon AVP über eine Signalkaskade aus dem Zellinneren in die Plasmamembran verlagert. Überschüssiges Wasser leitet die Zelle über andere Wasserkanäle (AQP3 und 4, Abbildung rechts, rechte Seite der Zelle) in den Blutkreislauf und das Gewebe ab.
(Graphik: Enno Klußmann/ Copyright: MDC)


Nierenhauptzellen mit Aquaporin-2 (blau) im Zellinneren (Bild 1) und in den Plasmamembranen (Umrandung; Bild 2). Die von der MDC-Forschungsgruppe entdeckte Substanz (4-Acetyldiphyllin; Bild 3), verhindert, dass sich Aquaporin-2 in die Zellmembran verlagert. Zellkerne sind in grün dargestellt.


(Immunfluoreszenzmikrospie: Jana Bogum, Kerstin Zühlke, Burkhard Wiesner, Jenny Eichhorst/ Copyright: MDC/FMP)

Täglich fließen durch die Nieren rund 1 500 Liter Blut. Daraus filtern die Nieren zunächst 180 Liter Primärharn, den sie auf zwei Liter konzentrieren und dann ausscheiden. Das geschieht wesentlich dadurch, dass das Gehirn das Hormon AVP (Arginin-Vasopressin) ausschüttet. Dieses Hormon gibt den Startschuss für eine mehrere Schritte umfassende Signalkaskade in der Niere, die auf Wasserkanäle (Aquaporine) und vor allem auf das Aquaporin-2 einwirkt. „Die Wasserkanäle, insbesondere Aquaporin-2, und ihre Verlagerung, spielen eine Schlüsselrolle bei der Regulierung des Wasserhaushalts“, erklärt Dr. Klußmann.

AVP, das zum Beispiel bei Durst im Gehirn aktiviert wird, veranlasst, dass Aquaporin-2 in den Hauptzellen der Sammelrohre der Niere aus dem Zellinneren in die Plasmamembran wandert. Das an der Membran vorbeifließende Wasser aus dem Primärharn können die Nierenzellen über Aquaporin-2 dann herausfiltern, so Dr. Klußmann weiter: „Damit die Nierenzelle nicht platzt und der Körper nicht austrocknet, wird das Wasser über eine andere Gruppe von Wasserkanälen, die Aquaporine 3 und 4, in das Blut und das Körpergewebe zurück geleitet. Diese Wasserkanäle sitzen im Gegensatz zu Aquaporin-2 ständig in der Plasmamembran der Nierenhauptzellen, und dort auch an einer anderen Stelle“. Ist der Durst gelöscht, vermindert sich das Hormon AVP und Aquaporin-2 geht zurück in das Innere der Nierenzelle, solange, bis es wieder benötigt wird.

Ist der AVP-Spiegel jedoch zu hoch, wie das zum Beispiel bei Patienten mit Herzinsuffizienz der Fall ist, befindet sich Aquaporin-2 dauerhaft in der Plasmamembran der Nierenhauptzelle und leitet das Wasser ohne Unterlass aus dem Primärharn in die Nierenhauptzellen des Sammelrohrs. Diese Zellen führen das überschüssige Wasser in das Körpergewebe ab. „Dieser Prozess trägt zur Bildung von Ödemen bei“, erläutert Dr. Klußmann.

Entdeckt, wie Wanderung der Wasserkanäle gehemmt werden kann
Wie lässt sich verhindern, dass sich Aquaporin-2 dauerhaft in der Plasmamembran ansiedelt und damit Krankheiten auslöst bzw. verstärkt? Den Forschern gelang es, mit einem neuen Forschungsansatz einen Hemmstoff zu finden, der die Verlagerung des Wasserkanals Aquaporin-2 in die Zellmembran verhindert. Zugleich entdeckten sie einen neuen Regulierungsmechanismus des Wasserhaushalts auf molekularer Ebene.

Die Forscher hatten „small molecules“ eingesetzt, niedermolekulare Wirkstoffe, die auf Grund dessen, dass sie sehr klein sind, gut in Zellen eindringen. Auf Nierenzellen testeten sie 17 700 solcher Substanzen und filterten dabei letztlich eine Substanz heraus, die die Wanderung von Aquaporin-2 in die Plasmamembran der Nierenzellen blockiert. Die Substanz (4-Acetyldiphyllin) unterbindet einen wichtigen biologischen Regulierungs- und Aktivierungsschritt, die Phosphorylierung. Das heißt, ein von einem Signalmolekül (cAMP) in der Signalkette aktiviertes Protein (Proteinkinase A) kann an das Aquaporin-2 keine Phosphatgruppe mehr anhängen, mit dem Resultat, dass die Wasserkanäle nicht mehr in die Plasmamembran wandern können.

Die neuen Forschungsergebnisse könnten nicht nur für die Behandlung von Ödemen interessant sein, sondern auch für die Therapie von Depressionen. Hier ist der Medizin aber daran gelegen, das Aquaporin-2 in die Plasmamembran der Nierenhauptzelle zu bekommen, denn das in der Therapie häufig verwendete Lithium verhindert, dass Aquaporin-2 in die Plasmamembran gelangt und verursacht dadurch Diabetes insipidus (Wasserruhr). Wird AVP im Gehirn nicht freigesetzt, oder ist der Rezeptor für AVP in der Nierenzelle defekt, entsteht, wie Prof. Rosenthal vor einigen Jahren entdeckte, ebenfalls Diabetes insipidus. Die Betroffenen scheiden bis zu 20 Liter Harn jeden Tag aus. Einen ähnlichen, aber nicht ganz so drastischen Effekt verursacht Alkohol. Wer viel Bier trinkt, muss ständig auf die Toilette. Der Grund – Alkohol verhindert, dass das Gehirn das Hormon AVP ausschüttet und Aquaporin-2 in die Plasmamembran wandert.

*Small molecule screening to reveal mechanisms underlying aquaporin-2 trafficking

Jana Bogum1,2,3, Dorte Faust1, Kerstin Zuhlke1,2, Jenny Eichhorst2, Marie C. Moutty1,2, Jens Furkert2, Adeeb Eldahshan1, Martin Neuenschwander2, Jens Peter von Kries2, Burkhard Wiesner2, Christiane Trimpert4, Peter M.T. Deen4, Giovanna Valenti5, Walter Rosenthal1,6 and Enno Klussmann1

1Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
2Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
3Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Germany
4Department of Physiology, RUNMC Nijmegen, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
5Department of General and Environmental Physiology, University of Bari, Italy
6Charité University Medicine Berlin, Germany

Kontakt:
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Weitere Informationen:
http://www.mdc-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie