Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Max-Planck-Forscher gewinnen Einblicke in die Evolution des Auges

04.06.2014

Die Larven des marinen Borstenwurms Platynereis dumerilii orientieren sich am Licht.

In ihren ersten Lebenstagen schwimmen sie ins Helle, um sich mit oberflächennahen Meeresströmungen zu verbreiten. Später wenden sie sich vom Licht ab und schwimmen zum Meeresgrund. Wissenschaftler des Max-Planck-Instituts für Entwicklungsbiologie haben jetzt herausgefunden, dass für diesen Orientierungswechsel zwei unterschiedliche Sehsysteme verantwortlich sind.


Borstenwurm Platynereis dumerilii

Nadine Randel / Max-Planck-Institut für Entwicklungsbiologie


Grafisches Modell eines Platynereis dumerilii

Nadine Randel / Max-Planck-Institut für Entwicklungsbiologie

Sie erstellten erstmals eine neuronale Karte, anhand der sich ein vollständiges visuelles System nachvollziehen lässt – vom Reizeingang bis zur Verhaltensreaktion. Damit können die Forscher der Evolution der Sehsysteme regelrecht ins Auge blicken.

Fototaxis, die lichtabhängige Bewegung, ist bei den Larven wirbelloser Meerestiere weit verbreitet. Viele wechseln dabei im Laufe ihrer Entwicklung die Orientierung: Aus der positiven, also zum Hellen gerichteten Fototaxis wird eine negative, vom Licht abgewandte Fototaxis. Wie die marinen Winzlinge dies bewerkstelligen ist noch nicht im Detail verstanden.

Doch zumindest für die Larven von Platyneris dumerilii kann Gáspár Jékely, Leiter der Forschungsgruppe „Neurobiologie des marinen Zooplanktons“, nun mit Sicherheit sagen: „Das Richtungsschwimmen ändert sich mit dem Augentyp. Wenn die Larven nach wenigen Tagen ihre ersten, sehr einfachen Augen nicht mehr nutzen, sondern auf eine weiter entwickelte Version zugreifen können, ändern sie auch ihr Verhalten. Statt ausschließlich zum Licht zu schwimmen, bewegen sie sich jetzt auch davon weg.“

In den ersten beiden Lebenstagen besitzt der Borstenwurm-Nachwuchs die einfachsten Augen der Welt: Auf beiden Seiten der Kopfregion sitzt jeweils eine einzelne Lichtsinneszelle, die von einer Pigmentzelle abgeschirmt wird.

Wie Jékely bereits 2008 gemeinsam mit seinen Kollegen vom European Molecular Biology Laboratory (EMBL) in Heidelberg herausgefunden hat, ist diese Lichtsinneszelle direkt mit dem Antriebsmotor der Larven verbunden, einem Wimpernkranz, der wie ein Kragen unterhalb der Kopfregion sitzt. Fällt Licht auf die Sinneszellen, beginnen sich die Larven spiralförmig vorwärts zu schrauben – immer in Richtung des Reizes.

Diese primitiven Augenflecken haben jedoch bereits nach drei Tagen ausgedient und werden nicht mehr benutzt. Dafür entstehen weiter oben am Kopf zwei neue, fortschrittlichere Augenpaare – die Vorläufer der Sehorgane erwachsener Borstenwürmer. Sie besitzen mehrere Lichtsinneszellen, einen Pigmentbecher und sogar eine einfache Linse. Außerdem entwickelt sich ein einfaches neuronales Netzwerk, das den Lichtreiz verarbeitet und weiterleitet.

Die Wissenschaftler in Jékelys Team haben dieses Neuronengeflecht mit Hilfe des Elektronenmikroskops genauer unter die Lupe genommen. So konnten sie eine Karte des visuellen Netzwerks einer drei Tage alten Larve erstellen. Sie identifizierten 71 Neurone, die über mehr als 1000 Nervenzellverbindungen, so genannte Synapsen, miteinander verknüpft sind.

Dabei zeigte sich, dass das Lichtsignal zwar weiterhin an den Wimpernkranz weitergeleitet wird, jedoch kommt es zusätzlich auch an der Rumpfmuskulatur der Larve an. Außerdem sind die Augen der beiden Körperhälften miteinander vernetzt.

„Durch Verhaltensexperimente haben wir nachgewiesen, dass der Lichtreiz die Rumpfmuskulatur aktiviert und sich die Larven dadurch vom Licht abwenden“, sagt Nadine Randel, Erstautorin der Studie die im Fachmagazin “eLife” veröffentlicht wurde. Dazu beleuchteten die Forscher ein durchsichtiges Gefäß mit drei Tage alten Larven. In der Folge krümmten sich die Tiere, so dass sie um die Kurve schwammen – weg vom Licht. Blockierten die Forscher die Nervenbahnen zwischen Lichtsinneszellen und Muskeln biochemisch, schwammen die Larven normal weiter, jedoch völlig unbeeindruckt von der Lichtquelle.

Die Nervenzellverbindungen zwischen den Augen beider Körperhälften ermöglichen das räumliche Sehen. Außerdem haben die Max-Planck-Forscher Neurone identifiziert, die die jeweils gegenüberliegenden Sehorgane hemmen. „Das verstärkt den Kontrast zwischen hell und dunkel und verbessert so die Orientierung und das gezieltere Schwimmen vom Licht weg“, erklärt Randel.

Den Tübinger Entwicklungsbiologen ist es mit dieser Arbeit erstmals gelungen, ein einfaches visuelles Netzwerk vom Reizeingang bis zur Verhaltensreaktion vollständig zu beschreiben. Darüber hinaus haben sie auch einen tieferen Einblick in die Evolutionsgeschichte des Auges gewonnen. Das simple Sehsystem der frühen Borstenwurmlarven, bestehend aus gerade mal zwei Zellen, entspricht Charles Darwins Vorstellung vom Ur-Auge, dem Prototyp, aus dem alle heute existierenden Sehorgane entstanden sind.

Das doppelte Augenpaar der drei Tage alten Larven verkörpert bereits eine Weiterentwicklung dieses Prinzips. „Es ist als ob wir in einem einzigen Tier gleich mehrere Etappen der Augenevolution beobachten können“, sagt Jékely. „Wir gehen davon aus, dass frühe Lichtsinnesorgane immer der Fototaxis dienten – erst später entwickelten sich Augen, mit denen sich Objekte erkennen ließen.“ Vermutlich konnten die ersten einfachen Augen in der Evolutionsgeschichte lediglich zwischen hell und dunkel unterscheiden. Aber sie gaben den Anstoß für die Entwicklung komplizierter Sehsysteme, zum Beispiel des menschlichen Auges.

Original Publikation:
Nadine Randel, Albina Asadulina, Luis A. Bezares-Calderón, Csaba Verasztó. Elisabeth A. Williams, Markus Conzelmann, Réza Shahidi, Gáspár Jékely: Neuronal connectome of a sensory-motor circuit for visual navigation. eLife 2014;10.7554/eLife.02730

Weitere Informationen:

http://tuebingen.mpg.de/startseite/detail/blick-ins-auge-der-evolution.html

Nadja Winter | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik