Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Making of“ von biorelevanten Nanomaterialien

11.01.2018

Polymerisation und elektrostatische Selbstorganisation als kombinierte Strategie, um niederdimensionale Polyion-Komplex-Nanomaterialien verschiedener Morphologien herzustellen

Die Wechselwirkungen von geladenen biologischen Makromolekülen wie Nucleinsäuren, Proteinen und Polysaccharid-Protein-Konjugaten lassen sich durch künstliche Polyelektrolyte nachahmen. Solche synthetischen polyionischen Komplexe könnten Wirkstoffe, Proteine oder Nucleinsäuren stabilisieren und als Trägermaterial zu ihrem Ziel bringen.


Bibliotheken biologisch relevanter Nanostrukturen rücken in greifbare Nähe

(c) Wiley-VCH

Chinesische Wissenschaftler beschreiben nun in der Zeitschrift Angewandte Chemie eine vielseitig einsetzbare, kommerziell anwendbare Strategie zur Herstellung von Polyion-Komplexaggregaten mit variierbarer Gestalt. Damit ließen sich Bibliotheken solcher niederdimensionalen, biologisch relevanten Nanostrukturen herstellen.

DNA, Proteine und die viele Polysaccharid-Konjugate sind natürliche, geladene Makromoleküle. Ihre komplexen Strukturen und besonderen Funktionen sind Voraussetzung für das zelluläre Leben. Synthetische polyionische Aggregate können die Eigenschaften von biologischen Makromoleküle nachahmen. Daher wären sie eine ideale Plattform für die Interaktion mit biologischen Strukturen.

Mit ihrer variablen Form und einem speziell zugeschnittenen Ladungszustand könnten sie als aktive Trägermaterialien für Nucleinsäuren in der Gentherapie oder für den zielgerichteten Wirkstofftransport dienen. Allerdings ist die Entwicklung von solchen maßgeschneiderten synthetischen Polyion-Komplexen (PICs) nicht trivial, denn Tausende von thermodynamischen und kinetischen Faktoren beeinflussen ihre Endmorphologie und den tatsächlich eingenommenen Ladungszustand.

Häufig sind Form, Reaktivität und Stabilität nicht reproduzierbar zu erreichen. Yuanli Cai und seine Kollegen an der Soochow-Universität in Suzhou (China) arbeiten daher intensiv an rational entwickelten Synthesen. Mit der Methode der „Polymerisations-induzierten elektrostatischen Selbstorganisation“ oder PIESA stellen sie nun eine kostengünstige skalierbare Synthese für niederdimensionale PICs mit variabler Morphologie vor, das für biomedizinische Zwecke verwendet werden könnte.

Für ihr Protokoll erweiterten die Autoren die Methode der „Polymerisations-induzierten Selbstorganisation“ (PISA), einer Synthesestrategie für Blockkopolymere in wässrigem Medium, indem sie ein positiv geladene Monomer in der Gegenwart eines synthetischen Polyions von entgegengesetzter Ladung und eines weiteren Makromoleküls als ungeladenen Copolymerblocks unter Einstrahlung von sichtbarem Licht polymerisierten. Das endgültige Nanomaterial bestand aus einem durch die elektrische Anziehungskraft definierten Aggregat des geladenen Polymers und der Kopolymerere. Es hatte bemerkenswerte Eigenschaften.

Je nach Festkörperkonzentration beobachteten die Autoren strukturelle Übergänge der synthetisierten PICs von der Vesikelform über kompartimentierte Vesikel bis hin zu flexiblen ultradünnen Filmen von 10 Nanometern Dicke. Je nach Lösungsmittel entstanden entweder porenreiche Filme oder sehr lange Nanodrähte, die die Probe gelieren ließen.

Nach Aussage der Autoren ergibt das PIESA-Verfahren eine „hohe Reproduzierbarkeit in einem kommerziell machbaren Maßstab unter ökologisch und ökonomisch ansprechenden Bedingungen bei 25 °C“. Anders gesagt könnten komplexe Nanomaterialien mit maßgeschneiderter Morphologie und einstellbarem Ladungszustand reproduzierbar hergestellt werden.

Anwendungen in der Biomedizin als Trägermaterial für DNA und andere geladene biologische Moleküle, um diese bis zum Ort ihrer Verwendung zu transportieren, kommen in Frage. Ebenso könnte eine Bibliothek von niederdimensionalen Nanomaterialien mit maßgeschneiderter Morphologie aufgebaut werden.

Angewandte Chemie: Presseinfo 52/2017

Autor: Yuanli Cai, Soochow University (China), mailto:ylcai@suda.edu.cn

Link zum Originalbeitrag: https://doi.org/10.1002/ange.201710811

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

http://presse.angewandte.de

Dr. Karin J. Schmitz | GDCh

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics