Wie das Licht die innere Uhr stellt

Fast alle Lebewesen, vom Einzeller bis zum Säugetier, verfügen über innere Uhren, die wichtige biologische Prozesse rhythmisch steuern. Diese Rhythmen sind genetisch festgelegt, können aber von äußeren Faktoren beeinflusst werden.

So nutzen die meisten Tierarten Licht als Signal, um ihre „circadianen“, das heißt etwa 24-stündigen Rhythmen, an den Tag-Nacht-Wechsel ihrer Umwelt anzupassen. Wie genau dies vonstattengeht, haben Wissenschaftler um Professor Nicholas S. Foulkes vom Institut für Toxikologie und Genetik des KIT untersucht. Ihre Ergebnisse sind in der Open-Access-Zeitschrift „PLoS Biology“ publiziert.

Um die circadianen Uhren bei Wirbeltieren zu untersuchen, greift Foulkes auf den Zebrafisch als Modellorganismus zurück. Für die Untersuchung werden Gewebezellen des Zebrafisches dem Licht ausgesetzt. Das führt dazu, dass die Zellen ihre inneren Uhren synchronisieren und schließlich alle im selben Takt schlagen. Licht führt in den meisten Zelltypen des Zebrafischs die Expression einer Reihe von Genen herbei; unter ihnen sind bestimmte Uhrengene. Um den Schlüsselvorgang aufzuklären, der Licht und Genexpression verbindet, konzentrierten sich die Forscher um Foulkes auf das Uhrengen „period2“ des Zebrafischs. Innerhalb des genetischen Regulationsbereichs, des so genannten Promoters, identifizierten die Wissenschaftler ein lichtempfindliches Modul (LRM – Light Responsive Module), das allein für die lichtgesteuerte Genexpression erforderlich ist. Interessanterweise ist dieses Modul auch in den period2-Genen weiterer Wirbeltiere, die nur sehr begrenzt über lichtempfindliche Gewebe verfügen, in hohem Maße erhalten. Überdies kann das menschliche LRM das Zebrafisch-LRM ersetzen und dessen Funktion übernehmen.

Das LRM enthält Verstärkersequenzen, so genannte Enhancer, die für seine Funktion wesentlich sind. Einer dieser Verstärker ist Ziel der Uhreneinstellung; ein anderer regelt die lichtgesteuerte Gen-expression. Die Erkenntnisse der Forscher um Nicholas S. Foulkes erweitern das Verständnis der lichtgesteuerten Synchronisation innerer Uhren sowie der Entwicklung der lichtgesteuerten Expression von Uhrengenen in Wirbeltieren.

Publikation:
Gad Vatine, Daniela Vallone, Lior Appelbaum, Philipp Mracek, Zohar Ben-Moshe, Kajori Lahiri, Yoav Gothilf, Nicholas S. Foulkes: Light Directs Zebrafish period2 Expression via Conserved D and E Boxes. PLoS Biology, Volume 7, Issue 10, e1000223

www.plosbiology.org

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Inge Arnold
Presse, Kommunikation und
Marketing
Tel.: +49 7247 82-2861
Fax: +49 7247 82-5080
E-Mail: inge.arnold@kit.edu

Media Contact

Dr. Elisabeth Zuber-Knost idw

Weitere Informationen:

http://www.kit.edu

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Forschende enthüllen neue Funktion von Onkoproteinen

Forschende der Uni Würzburg haben herausgefunden: Das Onkoprotein MYCN lässt Krebszellen nicht nur stärker wachsen, sondern macht sie auch resistenter gegen Medikamente. Für die Entwicklung neuer Therapien ist das ein…

Mit Kleinsatelliten den Asteroiden Apophis erforschen

In fünf Jahren fliegt ein größerer Asteroid sehr nah an der Erde vorbei – eine einmalige Chance, ihn zu erforschen. An der Uni Würzburg werden Konzepte für eine nationale Kleinsatellitenmission…

Zellskelett-Gene regulieren Vernetzung im Säugerhirn

Marburger Forschungsteam beleuchtet, wie Nervenzellen Netzwerke bilden. Ein Molekülpaar zu trennen, hat Auswirkungen auf das Networking im Hirn: So lässt sich zusammenfassen, was eine Marburger Forschungsgruppe jetzt über die Vernetzung…

Partner & Förderer