Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leichter lesen lernen

07.08.2012
Die Leselernschwäche hat ihre Ursache in der Signalverarbeitung im Gehirn

Für die erfolgreiche Teilhabe am Leben ist es wichtig, lesen und schreiben zu können. Dennoch haben viele Kinder und Erwachsene Schwierigkeiten, diese Fähigkeiten zu erwerben, ohne dass es dafür einen offensichtlichen Grund gibt. Sie leiden unter Lese-Rechtschreib-Schwäche, die vielerlei Symptome haben kann.


Darstellung des Gehirns von Legastehnikern im Vergleich zur Kontrollgruppe. Der blaue Bereich zeigt den auditorischen Thalamus, der gründe die medialen Kniehöcker.

© MPI für Kognitions- und Neurowissenschaften

Dank der Forschungen von Begoña Díaz und ihren Kollegen vom Max-Planck-Institut für Kognitions- und Neurowissenschaften in Leipzig sind wir nun einen großen Schritt weiter, um die Ursache der Lese-Rechtschreibschwäche zu verstehen. Die Wissenschaftler haben einen wichtigen neuronalen Mechanismus hinter der Leselernschwäche (Legasthenie) aufgedeckt und gezeigt, dass viele der Schwierigkeiten bei Legasthenie möglicherweise auf die Fehlfunktion des medialen Kniehöckers im Thalamus zurückzuführen sind. Die Ergebnisse liefern eine wichtige Basis, um Therapiemöglichkeiten zu entwickeln.

Menschen, die unter Legasthenie leiden, sind unfähig, Strukturen in der Lautsprache zu erkennen. Während die meisten Kinder beispielsweise bereits vor der Einschulung in der Lage sind zu erkennen, ob sich zwei Wörter reimen, können Legastheniker dies oft bis ins späte Grundschulalter nicht. Die meisten Betroffenen leiden ihr Leben lang unter der Lernschwäche. Jedoch gibt es auch immer wieder Fälle, in denen Menschen die Leselernschwäche ausgleichen können. „Das deutet darauf hin, dass man Legasthenie therapieren kann. Wir versuchen daher, die neuronalen Ursachen der Lernschwäche zu finden, um eine Basis für verbesserte Therapiemöglichkeiten zu schaffen“, sagt Díaz.

Fünf bis zehn Prozent der Kinder leiden weltweit unter Legasthenie und dennoch sind die Ursachen nur unzureichend bekannt. Obwohl es den Betroffenen weder an Intelligenz oder schulischer Bildung mangelt, haben sie Schwierigkeiten beim Lesen, Verstehen und Deuten einzelner Wörter oder ganzer Texte. Die Forscher zeigten, dass eine Fehlfunktion von einer Struktur, die auditorische Information vom Ohr zum Kortex weiterleitet, eine wichtige Ursache dafür ist.
Legasthenie hat also einen neuronalen Ursprung. Bei Betroffenen verarbeitet der mediale Kniehöcker des auditorischen Thalamus akustische Informationen fehlerhaft. „Diese Fehlfunktion auf einer der unteren Ebenen der Sprachverarbeitung könnte sich durch das gesamte System hindurch fortsetzen. Das erklärt, warum die Symptome der Leselernschwäche so vielfältig sind“, so Díaz.

Die Forscher unter der Leitung von Katharina von Kriegstein führten zwei Experimente mit mehreren Testpersonen durch, in denen diese verschiedene Sprachverständnisaufgaben erfüllen mussten. Stellten die Wissenschaftler den Betroffenen Aufgaben, bei denen Sprachlaute verglichen werden mussten, so zeigten Magnet-Resonanz-Tomographie-Aufnahmen (MRT) auffällige Reaktionen im Bereich des medialen Kniehöckers. Dahingegen zeigte sich kein Unterschied zwischen Kontrollgruppen und den Menschen mit Leselernschwächen, wenn die Aufgaben darin bestand, sich die Sprachlaute einfach nur anzuhören ohne eine besondere Aufgabe zu erledigen. „Das Problem liegt also nicht in der sensorischen Verarbeitung an sich, sondern in der Verarbeitung bei Spracherkennung“, sagt Díaz. In anderen Bereichen des auditorischen Signalwegs konnten zudem keine Unterschiede zwischen beiden Versuchsgruppen entdeckt werden.

Die Ergebnisse der Leipziger Wissenschaftler kombinieren dabei verschiedene theoretische Ansätze, die sich mit der Ursache von Dyslexie beschäftigen, und erlauben es nun erstmals, mehrere dieser Theorien zu einem Gesamtbild zusammenzufassen. „Die Ursache eines Problems zu kennen, ist immer der erste Schritt auf dem Weg zu einer erfolgreichen Therapie“, sagt Díaz. Das nächste Projekt der Forscher ist nun, zu untersuchen, ob man mit derzeitigen Therapieprogrammen auf den medialen Kniehöcker einwirken kann, um das Lesen lernen langfristig für alle zu erleichtern.
Ansprechpartner
Dr. Begoña Díaz
Max-Planck-Institut für Kognitions- und Neurowissenschaften
Telefon: +49 341 9940-2480
Email: diaz@­cbs.mpg.de
Dr. Katharina von Kriegstein
Max-Planck-Institut für Kognitions- und Neurowissenschaften
Telefon: +49 341 9940-2476
Email: kriegstein@­cbs.mpg.de
Peter Zekert
Max-Planck-Institut für Kognitions- und Neurowissenschaften
Telefon: +49 341 9940-2404
Fax: +49 341 9940-2221
Email: zekert@­cbs.mpg.de
Originalveröffentlichung
Díaz, Hintz,Kiebel und von Kirchstein
Dysfunction of the auditory thalamus in developmental dyslexia
PNAS, 6.August 2012

Dr. Begoña Díaz | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5927016/legastehnie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designte Proteine gegen Muskelschwund
29.06.2017 | Universität Basel

nachricht Benzin und Chemikalien aus Pflanzenresten
29.06.2017 | Paul Scherrer Institut (PSI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Designte Proteine gegen Muskelschwund

29.06.2017 | Biowissenschaften Chemie

Benzin und Chemikalien aus Pflanzenresten

29.06.2017 | Biowissenschaften Chemie

Hochleitfähige Folien ermöglichen großflächige OLED-Beleuchtung

29.06.2017 | Energie und Elektrotechnik