Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Nanopartikel beeinflussen die Herzfrequenz

01.08.2011
Künstlich hergestellte Nanopartikel begegnen uns immer häufiger in unserem Alltag. Welchen Einfluss sie jedoch auf die Gesundheit haben und mit welchen Mechanismen sie im Körper wirken ist bisher kaum bekannt.

Ein Team aus Wissenschaftlern der Technischen Universität München (TUM) und des Helmholtz-Zentrums München wies nun mit Hilfe eines sogenannten Langendorff-Herzens erstmals direkte Auswirkungen ausgewählter künstlicher Nanopartikel auf Herzfrequenz und Rhythmus nach. Über die Ergebnisse berichten die Forscher in der Zeitschrift ACSNano.

Angesichts der steigenden Nachfrage nach künstlichen Nanopartikeln in Medizin und Industrie ist es für Hersteller wichtig zu wissen, wie die Teilchen Körperfunktionen beeinflussen, und mit welchen Mechanismen sie dies tun – eine Frage, zu der es bislang kaum Erkenntnisse gibt. Zwar stellen Studien an Herzpatienten bereits seit Jahrzehnten eine schädliche Wirkung von Feinstaub aus der Luft auf das Herz-Kreislaufsystem fest, doch ob die Schäden direkt durch die Nanopartikel ausgelöst werden oder indirekt, zum Beispiel durch Stoffwechselprozesse oder Entzündungsreaktionen, ließ sich nicht feststellen. Die Reaktionen des Körpers sind hierzu zu komplex.

An einem sogenannten Langendorff-Herz, einem isolierten, mit Nährlösung als Blutersatz durchspültem Nagetier-Herz, konnten Wissenschaftler des Helmholtz Zentrums München und der TU München erstmals nachweisen, dass künstliche Nanopartikel eine deutlich messbare Wirkung auf das Herz haben. Als die Forscher das Herz einer Reihe gängiger künstlicher Nanopartikel aussetzten, reagierte es auf bestimmte Typen der Partikel mit einer erhöhten Frequenz, Rhythmusstörungen und veränderten EKG Werten, wie sie für Herzerkrankungen typisch sind. „Wir nutzen das Herz als Detektor“, erklärt Professor Reinhard Nießner, Direktor des Instituts für Wasserchemie und Chemische Balneologie der TU München. „Auf diese Weise kann man prüfen, ob ein Nanopartikel eine Wirkung auf die Herzfunktion ausübt. So etwas gab es vorher noch nicht.“

Mit dem neuen Modell-Herz können die Wissenschaftler außerdem feststellen, über welchen Mechanismus die Nanopartikel die Herzfrequenz beeinflussen. Dazu hatten sie den Versuchsaufbau Langendorffs so erweitert, dass die Lösung, die das Herz einmal durchflossen hat, wieder in den Kreislauf zurückgeführt wird. Auf diese Weise können die Forscher Botenstoffe, die das Herz ausschüttet, anreichern und so die genauen Reaktionen des Herzens auf die Nanoteilchen nachvollziehen.

Verantwortlich für die Erhöhung der Herzfrequenz durch Nanopartikel ist nach Ansicht von Stampfl und Nießner sehr wahrscheinlich der Botenstoff Noradrenalin, der von Nervenzellendungen im Herzen ausgeschüttet wird. Er beschleunigt die Herzfrequenz und spielt auch im zentralen Nervensystem eine wesentliche Rolle – ein Hinweis darauf, dass Nanopartikel auch hier eine schädliche Wirkung haben könnten.

An ihrem Herzmodell testeten Stampfl und sein Team die Nanopartikel Flammruß und Titandioxid sowie funkenerzeugten Kohlenstoff, der als Modell für Luftschadstoffe aus der Dieselverbrennung dient. Auch Siliziumdioxid, mehrere Aerosile, die beispielsweise als Verdickungsmittel in Kosmetika eingesetzt werden und der Kunststoff Polystyrol wurden untersucht. Flammruß, funkenerzeugter Kohlenstoff, Titandioxid und Siliziumdioxid zeigten eine Erhöhung der Herzfrequenz von bis zu 15 Prozent und führten zu veränderten EKG-Werten, die sich auch, nachdem die Nanopartikel schon nicht mehr wirkten, nicht normalisierten. Die Aerosile und das Polystyrol hingegen beeinflussten die Herzfunktion nicht.

Besonders hilfreich könnte das neue Messsystem vor allem für die Medizinforschung sein. Hier werden künstliche Nanopartikel immer öfter als Transportvehikel eingesetzt. Der Grund: Ihre große Oberfläche. An ihr lassen sich gut Wirkstoffe anheften, die von den Teilchen dann zu einem Zielort im Körper, etwa zu einem Tumor, transportiert werden. Die ersten Prototypen solcher „Nanocontainer“ bestehen meist aus Kohlenstoffen oder Silikaten – Substanzen über deren Wirkung im Körper bislang nichts bekannt ist. Das neue Herzmodell könnte als Testorgan dienen, um zukünftig diejenigen Partikeltypen auszuwählen, die das Herz nicht schädigen.

Auch in zahlreichen Industrieprodukten werden künstlich hergestellte Nanopartikel eingesetzt, teilweise bereits seit Jahrzehnten. Ihre geringe Größe und ihre im Vergleich zum Volumen große Oberfläche verleiht den Partikeln einzigartige Eigenschaften: Die große Oberfläche von Titandioxid (TiO2) etwa sorgt für einen hohen Lichtbrechungsindex, der die Substanz strahlend weiß erscheinen lässt. Es wird daher oft als weiße Deckfarbe oder als UV-Blocker in Sonnencremes verwendet. Eine große Bedeutung hat auch der sogenannte Flammruß, von dem jährlich mehr als acht Millionen Tonnen produziert werden. Er findet sich vor allem in Autoreifen und in Plastik. Die geringe Größe der nur 14 Nanometer großen Teilchen macht sie zudem zu einem geeigneten Färbemittel - beispielsweise für Druckerfarbe in Fotokopierern.

Mit ihrer Weiterentwicklung des Langendorff-Herzens haben die Forscher nun erstmals einen Messaufbau entwickelt, mit dem sich die Wirkung von Nanopartikeln auf ein ganzes, intaktes Organ untersuchen lässt, ohne dass die Reaktionen anderer Organe das System beeinflussen. Gerade das Herz eignet sich als Testobjekt besonders gut. „Es besitzt einen eigenen Taktgeber, den Sinusknoten, und kann daher als Organ außerhalb des Körpers über mehrere Stunden hinweg weiterarbeiten“, erklärt Andreas Stampfl, Erstautor der Studie. „Zudem lassen sich Veränderungen der Herzfunktion deutlich an Herzfrequenz und EKG- Kurve erkennen.“

„Wir haben nun ein Modell für ein höheres Organ, an dem sich der Einfluss von künstlichen Nanopartikeln testen lässt“, erklärt auch Nießner. „Als nächstes möchten wir herausfinden, weshalb bestimmte Nanopartikel einen Einfluss auf die Herzfunktionen besitzen, andere jedoch nicht.“ Herstellungsart und Form könnten hier eine wichtige Rolle spielen. In folgenden Studien möchten die Wissenschaftler daher die Oberflächen der unterschiedlichen Nanoteilchentypen und deren Interaktion mit den Zellen der Herzwand genauer untersuchen.

Originalpublikation:
Andreas Stampfl, Melanie Maier, Roman Radykewicz, Peter Reitmeir, Martin Göttlicher, Reinhard Niessner
Langendorff Heart: A Model System To Study Cardiovascular Effects of Engineered Nanoparticles

ACS Nano 2011 5(7) 5345-5353 – DOI: 10.1021/nn200801c

Kontakt:
Andreas Stampfl,
Helmholtz Zentrum München
Institut für Toxikologie
Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
Tel.: +49 89 3187 2625 – Fax: +49 89 3187 3449
E-Mail: stampfl@helmholtz-muenchen.de
Prof. Dr. Reinhard Nießner
Technische Universität München
Institut für Hydrochemie, Lehrstuhl für analytische Chemie
Marchioninistraße 17, 81377 München, Germany
Tel: +49-(0)89-2180-78231 – Fax: +49-(0)89-2180-78255
E-Mail: reinhard.niessner@ch.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.tum.de
http://pubs.acs.org/doi/pdfplus/10.1021/nn200801c

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
21.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
18.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics