Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Flimmerhärchen: Kieler Forscher entwickeln Nano-Transportsystem

01.07.2014

Seit Milliarden von Jahren bewegen sich Bakterien durch ihre Flimmerhärchen fort. Auch in fast jeder menschlichen Zelle sind die winzigen schlagenden Härchen zu finden.

Forscher der Christian-Albrechts-Universität zu Kiel (CAU) haben nun Moleküle nach ihrem Vorbild erschaffen. Künstliche Organellen und eine gezieltere Herstellung von Substanzen sind damit denkbar. Ihre Arbeit veröffentlichten die Wissenschaftler unlängst im Fachjournal European Journal of Organic Chemistry. 


Künstlerische Darstellung von Pantoffeltierchen mit künstlichen Flimmerhärchen: Die Moleküle haften mit „Saugnäpfen“ an einer Oberfläche und schlagen nach einer Seite, wenn sie mit Licht angeregt werden. Die Nachbildung des Milliarden Jahre alten biologischen Transportsystems könnte zukünftig in winzigen „Fabriken“ eingesetzt werden.

Abbildung/Copyright: Herges

Flimmerhärchen (Cilien), auch Flimmerepithele genannt, bedecken unsere Atemwege wie ein Rasen. In unseren Rachen- und Nasenschleimhäuten sorgen sie dafür, dass Schleim und die darin eingebetteten Fremdkörper ständig Richtung Rachen hinausbefördert werden (außer bei starken Raucherinnnen und Rauchern, die ihre Cilien durch Nikotin und Teer zerstört haben).

Dem Ziel, dieses biologische Transportsystem künstlich nachzubilden, sind Tobias Tellkamp und Professor Rainer Herges mit schaltbaren Molekülen nun einen großen Schritt näher gekommen. 

Solche Moleküle, die mit Licht bestrahlt hin und her „zucken“, gibt es zwar schon lange. Eine gerichtete Bewegung war aber damit bisher nicht möglich. Die Schwierigkeit bestand darin, dass die Moleküle nur nach einer Seite schlagen dürfen, da sich die Bewegungen sonst aufheben.

Mit einem Trick in der Molekülkonstruktion haben die Kieler Chemiker aus dem Sonderforschungsbereich 677 „Funktion durch Schalten“ dieses Problem gelöst: Damit die künstlichen Härchen ihre Aufgabe erfüllen können, müssen sie außerdem auf einer Oberfläche befestigt werden. „Also haben wir eine Art molekularen Saugnapf an den Schaltern befestigt“, erklärt Projektleiter Herges. 

Untersuchungen zeigten, dass dieser Saugnapf sehr gut auf Goldoberflächen haftet. Das Forschungsteam beobachtete, dass sich die Moleküle schon bei einem kurzen Eintauchen des Goldes in die Lösung völlig selbstständig und  regelmäßig nebeneinander anordnen. „Die Saugnäpfe saugen sich fest, sind auf der Oberfläche aber immer noch beweglich und ziehen sich gegenseitig an“, beschreibt Doktorand Tellkamp. So entsteht ein künstliches Epithel. 

Ob die so hergestellten Epithele wirklich so funktionieren wie etwa in unseren Nasenschleimhäuten, wollen die Forscher in einer zweiten Phase mittels Rasterkraftmikroskop-Untersuchung herausfinden. Behilflich sind ihnen dabei Kolleginnen und Kollegen aus der Kieler Oberflächenphysik um Professor Olaf Magnussen. Geplant ist, drei Nanometer große Partikel auf den mit Licht angeregten Härchen kontrolliert in eine Richtung zu bewegen. 

Die Ergebnisse sind nicht nur für die Grundlagenforschung höchst interessant. Mit den künstlichen Flimmerepithelen ließe sich theoretisch eine molekulare Nanofabrikation verwirklichen, bei der molekulare Maschinen andere Maschinen bauen, indem chemische Produkte gezielt und präzise zueinander geführt werden. Ganze Fabrikationsanlagen könnten so auf einem winzigen Chip Platz finden.

Außerdem könnten künstliche Organellen mit den molekularen Flimmerhärchen ausgestattet werden, die durch einen äußeren Reiz gesteuert oder gar autonom in der Blutbahn auf einen Krankheitsherd hinsteuern, erläutern die Forschenden mögliche Anwendungszwecke.   

Originalpublikation Tobias Tellkamp, Jun Shen, Yoshio Okamoto and Rainer Herges. Diazocines on Molecular Platforms. Eur. J. Org. Chem 2014. DOI: 10.1002/ejoc.201402541 (Online Publikation) 

Kontakt Prof. Dr. Rainer Herges Christian-Albrechts-Universität zu Kiel Otto Diels-Institut für Organische Chemie Tel.: 0431/880-2440 E-Mail: rherges@oc.uni-kiel.de

Denis Schimmelpfennig | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält
22.05.2017 | Ruhr-Universität Bochum

nachricht Myrte schaltet „Anstandsdame“ in Krebszellen aus
22.05.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie