Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Flimmerhärchen: Kieler Forscher entwickeln Nano-Transportsystem

01.07.2014

Seit Milliarden von Jahren bewegen sich Bakterien durch ihre Flimmerhärchen fort. Auch in fast jeder menschlichen Zelle sind die winzigen schlagenden Härchen zu finden.

Forscher der Christian-Albrechts-Universität zu Kiel (CAU) haben nun Moleküle nach ihrem Vorbild erschaffen. Künstliche Organellen und eine gezieltere Herstellung von Substanzen sind damit denkbar. Ihre Arbeit veröffentlichten die Wissenschaftler unlängst im Fachjournal European Journal of Organic Chemistry. 


Künstlerische Darstellung von Pantoffeltierchen mit künstlichen Flimmerhärchen: Die Moleküle haften mit „Saugnäpfen“ an einer Oberfläche und schlagen nach einer Seite, wenn sie mit Licht angeregt werden. Die Nachbildung des Milliarden Jahre alten biologischen Transportsystems könnte zukünftig in winzigen „Fabriken“ eingesetzt werden.

Abbildung/Copyright: Herges

Flimmerhärchen (Cilien), auch Flimmerepithele genannt, bedecken unsere Atemwege wie ein Rasen. In unseren Rachen- und Nasenschleimhäuten sorgen sie dafür, dass Schleim und die darin eingebetteten Fremdkörper ständig Richtung Rachen hinausbefördert werden (außer bei starken Raucherinnnen und Rauchern, die ihre Cilien durch Nikotin und Teer zerstört haben).

Dem Ziel, dieses biologische Transportsystem künstlich nachzubilden, sind Tobias Tellkamp und Professor Rainer Herges mit schaltbaren Molekülen nun einen großen Schritt näher gekommen. 

Solche Moleküle, die mit Licht bestrahlt hin und her „zucken“, gibt es zwar schon lange. Eine gerichtete Bewegung war aber damit bisher nicht möglich. Die Schwierigkeit bestand darin, dass die Moleküle nur nach einer Seite schlagen dürfen, da sich die Bewegungen sonst aufheben.

Mit einem Trick in der Molekülkonstruktion haben die Kieler Chemiker aus dem Sonderforschungsbereich 677 „Funktion durch Schalten“ dieses Problem gelöst: Damit die künstlichen Härchen ihre Aufgabe erfüllen können, müssen sie außerdem auf einer Oberfläche befestigt werden. „Also haben wir eine Art molekularen Saugnapf an den Schaltern befestigt“, erklärt Projektleiter Herges. 

Untersuchungen zeigten, dass dieser Saugnapf sehr gut auf Goldoberflächen haftet. Das Forschungsteam beobachtete, dass sich die Moleküle schon bei einem kurzen Eintauchen des Goldes in die Lösung völlig selbstständig und  regelmäßig nebeneinander anordnen. „Die Saugnäpfe saugen sich fest, sind auf der Oberfläche aber immer noch beweglich und ziehen sich gegenseitig an“, beschreibt Doktorand Tellkamp. So entsteht ein künstliches Epithel. 

Ob die so hergestellten Epithele wirklich so funktionieren wie etwa in unseren Nasenschleimhäuten, wollen die Forscher in einer zweiten Phase mittels Rasterkraftmikroskop-Untersuchung herausfinden. Behilflich sind ihnen dabei Kolleginnen und Kollegen aus der Kieler Oberflächenphysik um Professor Olaf Magnussen. Geplant ist, drei Nanometer große Partikel auf den mit Licht angeregten Härchen kontrolliert in eine Richtung zu bewegen. 

Die Ergebnisse sind nicht nur für die Grundlagenforschung höchst interessant. Mit den künstlichen Flimmerepithelen ließe sich theoretisch eine molekulare Nanofabrikation verwirklichen, bei der molekulare Maschinen andere Maschinen bauen, indem chemische Produkte gezielt und präzise zueinander geführt werden. Ganze Fabrikationsanlagen könnten so auf einem winzigen Chip Platz finden.

Außerdem könnten künstliche Organellen mit den molekularen Flimmerhärchen ausgestattet werden, die durch einen äußeren Reiz gesteuert oder gar autonom in der Blutbahn auf einen Krankheitsherd hinsteuern, erläutern die Forschenden mögliche Anwendungszwecke.   

Originalpublikation Tobias Tellkamp, Jun Shen, Yoshio Okamoto and Rainer Herges. Diazocines on Molecular Platforms. Eur. J. Org. Chem 2014. DOI: 10.1002/ejoc.201402541 (Online Publikation) 

Kontakt Prof. Dr. Rainer Herges Christian-Albrechts-Universität zu Kiel Otto Diels-Institut für Organische Chemie Tel.: 0431/880-2440 E-Mail: rherges@oc.uni-kiel.de

Denis Schimmelpfennig | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE