Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kuckucke bleiben auf Kurs

09.01.2014
Die Vögel kommen auf ihrem tausende Kilometer langen Rundflug in ihre Winterquartiere in Zentralafrika kaum vom Weg ab

Hektische kurze Schläge mit den Flügeln, die kaum über den Körper angehoben werden – übermäßig elegant wirkt der Flug des Kuckucks nicht. Trotzdem tragen ihn seine Flügel jährlich über 16000 Kilometer weit.


Der Kuckuck ist ein Langstreckenzieher, der vor allem nachts fliegt. In Deutschland kommen die Vögel meist im April in ihren Brutgebieten an. Im August brechen sie dann in Richtung Afrika auf.

© Natural History Museum of Denmark/M. Willemoes

Martin Wikelski vom Max-Planck-Institut für Ornithologie in Radolfzell hat zusammen mit einem internationalen Wissenschaftlerteam erstmals mit Hilfe von Satellitendaten die Rundreise von Kuckucken aus ihren Brutgebieten in Dänemark und Südschweden in die Überwinterungsplätze in Zentralafrika und wieder zurück verfolgt.

Die Routen der einzelnen Vögel weichen trotz der enormen Distanz kaum voneinander ab. Mithilfe von Computermodellen errechnete Flugstrecken, die ausschließlich auf einem angeborenen Orientierungssinn beruhen, verlaufen deutlich unterschiedlicher. Kuckucke verlassen sich folglich nicht nur auf ein angeborenes Kompass-Uhr-Navigationsvermögen, sondern nutzen zusätzliche Orientierungshilfen.

Jedes Jahr brechen Milliarden von Vögeln aus ihren Brut- und Überwinterungsgebieten auf und fliegen rund um den Erdball. Die verschiedenen Vogelarten finden dabei auf unterschiedliche Weise ans Ziel. Bei manchen Arten können die Jungvögel lediglich einem angeborenen Orientierungssinn nach dem Kompass-Uhr-Prinzip folgen, der ihnen die richtige Flugrichtung sowie die zurückgelegte Zeit und damit die Entfernung angibt.

Auf ihrem Jungfernflug lernen sie dann von älteren Artgenossen, Abweichungen von der richtigen Route zu korrigieren. Erfahrene Tiere kennen beispielsweise auffällige Merkmale der Landschaft oder orientieren sich vielleicht sogar an den Sternen. Manche Arten nutzen auch das Magnetfeld der Erde oder riechen, wo sie sich gerade befinden.

Woran sie sich genau orientieren und entlang welcher Routen sie fliegen, liegt für viele Vogelarten noch immer im Dunkeln. Die Beringung einzelner Tiere gab lange Zeit nur stichprobenartig Stationen ihrer Reise preis. Erst seit wenigen Jahren können Wissenschaftler die Position einzelner Individuen über einen längeren Zeitraum kontinuierlich aufzeichnen und in Echtzeit verfolgen. Sie statten die Tiere dafür mit batteriebetriebenen Minisendern aus, die Angaben zu Ort und Bewegung an Satelliten übermitteln. Damit können die Forscher auch die Wanderungsbewegungen von Vögeln wie dem Kuckuck untersuchen, die nicht in großen Schwärmen über den Himmel ziehen und deshalb schwer zu beobachten sind.

Sender im Fluggepäck

Zusammen mit Kollegen aus Dänemark, den Niederlanden, Schweden und den USA hat Martin Wikelski vom Max-Planck-Institut in Radolfzell die Routen von Kuckucken (Cuculus canorus) aus Dänemark und Südschweden mit dem satellitengestützten Ortungssystem ARGOS über ein Jahr hinweg verfolgt. Die fünf Gramm schweren Minisender auf dem Rücken der Vögel funkten ihre Positionsangaben alle zwei Tage zehn Stunden lang an acht Satelliten in 850 Kilometer Höhe. Von den acht im Frühjahr 2010 mit Sendern versehenen Vögeln kehrten drei im darauffolgenden Jahr wieder in ihr Brutareal zurück, zwei davon genau an den Ort, wo sie gefangen worden waren.

Zwischen Ende Juni und Anfang August brechen die skandinavischen Kuckucke offenbar in ihre Überwinterungsgebiete auf. Auf ihrer im Schnitt rund 7100 Kilometer langen Reise nach Afrika im Herbst legen die Kuckucke mehrere Zwischenstopps ein: Zunächst rasten sie für jeweils etwa einen Monat im nördlichen Mitteleuropa (Polen) sowie in Südosteuropa (Ungarn, Griechenland), bevor sie im September im Grenzgebiet von Libyen und Ägypten die Sahara überfliegen. Von dieser Etappe erholen sie sich rund anderthalb Monate lang in der östlichen Sahelzone und überwintern dann drei Monate in Waldgebieten im südwestlichen Zentralafrika. Von dort machen sie sich im Februar auf den 9100 Kilometer langen Heimflug und kommen nach Zwischenstopps in Ghana und der Elfenbeinküste, Westafrika und Italien im Mai wieder in ihren Brutgebieten an – mehr als zehn Monate nach ihrem Start. Keine zwei Monate später bereiten sie sich schon wieder auf den nächsten Rundflug vor.

Der Flug der Kuckucke ist genau auf Nahrungs- und Brutbedingungen vor Ort abgestimmt. So landen die Vögel beispielsweise genau dann südlich der Sahara, wenn dort nach der Regenzeit ein reiches Nahrungsangebot herrscht. Außerdem müssen sie ihre Ankunft in den Brutgebieten mit dem Brutverhalten ihrer Wirtsvögel abstimmen: Je nördlicher sie brüten, desto später brüten die potenziellen Stiefeltern ihrer Küken. Folglich müssen sie in den nördlichen Brutgebieten später ankommen. Kuckucke aus unterschiedlichen Populationen, zum Beispiel aus Großbritannien, fliegen deshalb entlang anderer Routen und zu anderen Zeiten.

Meister in der Navigation

Im Schnitt landet jeder der Kuckucke bei seinen Zwischenstopps innerhalb von 460 Kilometern – und das nach einem tausende Kilometer langen Flug. „Ein besonders beeindruckendes Beispiel für den erstaunlichen Orientierungssinn der Kuckucke ist der Überflug über die Sahara: Nach über 5000 Kilometer Flug sind die von uns besenderten Vögel im Abstand von 160 Kilometern voneinander im Süden des Tschad gelandet“, sagt Martin Wikelski.

Doch wie schaffen es die Kuckucke, ihr Flugziel so genau anzupeilen? Jeder Vogel fliegt nämlich für sich alleine und das noch dazu meist bei Nacht. Außerdem verlassen die Altvögel das Brutgebiet meist vor den Jungtieren. Diese können sich also wahrscheinlich nicht die Erfahrungen der Routiniers zunutze machen und sich auch nicht an auffälligen Landschaftsmerkmalen orientieren.

Stattdessen folgen sie vermutlich einem angeborenen Flugprogramm, das ihnen die Richtung und Wegstrecke vorgibt. Doch ein solches fest eingebautes Navi reicht alleine nicht aus, das zeigen Berechnungen am Computer. Die Forscher haben nämlich am Computer simuliert, wie die Flugbahnen verlaufen würden, wenn die Vögel ausschließlich einem Kompass-Uhr-Navigationssystem folgen oder wenn sie sich zusätzlich an Geländemerkmalen orientieren. „Selbst bei kürzeren Etappen lagen die Zwischenstopps in den Simulationen weiter auseinander als die in der Natur beobachteten. Sogar wenn wir in den Simulationen berücksichtigten, dass Abweichungen von der korrekten Flugroute an besonderen Barrieren wie Gebirgen oder Meeren tödlich für Jungvögel enden, waren die berechneten Flugkorridore immer noch breiter“, erklärt Wikelski.

Ein reines Kompass-Uhr-Navigationssystem kann die engen Flugkorridore der Kuckucke also nicht erklären. „Kuckucke berücksichtigen offenbar zusätzliche Informationen aus ihrer Umgebung wie Winde, Gerüche oder Strukturen in der Landschaft. Sie folgen aber nicht nur solchen Hinweisen, sondern wissen darüber hinaus immer genau, wo sie sind und steuern gezielt Zwischenziele an – möglicherweise dank der Gerüche von Landschaften, die sie von früheren Reisen kennen“, erklärt Wikelski.

Wie die jungen Kuckucke beim ersten Mal ihren Weg finden und wie sich später so genau an ihren Flugplan halten, wissen die Forscher also noch nicht. Dazu müssen sie Kuckucke fangen, an neue Orte transportieren, ohne dass sich die Tiere währenddessen orientieren können, und sie wieder freilassen. Die eingeschlagene Route kann dann Hinweise auf das Orientierungsverhalten geben. Außerdem soll das geplante für 2015 auf der Internationalen Raumstation geplante Forschungsprogramm ICARUS es möglich machen, mehr und kleinere Vögel zu verfolgen und das mit tausendfach höherer Genauigkeit.

In jedem Fall haben die schmalen Flugkorridore der Kuckucke große Bedeutung für den Bestand der Tiere. Eine Zerstörung der Lebensräume in den eng begrenzten Zwischenstopps, Flughindernisse oder intensive Jagd kann für ganze Populationen existenzbedrohend sein. Der Schutz dieser Korridore ist also ähnlich wichtig wie die Bewahrung der Rast- und Brutplätze so prominenter Arten wie Küstenvögel, Gänse oder Kranichen.

Ansprechpartner

Prof. Dr. Martin Wikelski
Max-Planck-Institut für Ornithologie, Teilinstitut Radolfzell, Radolfzell
Telefon: +49 7732 1501-62
Fax: +49 7732 1501-69
E-Mail: martin@orn.mpg.de
Daniel Piechowski
Max-Planck-Institut für Ornithologie, Teilinstitut Radolfzell, Radolfzell
Telefon: +49 7732 1501-19
E-Mail: dpiechowski@orn.mpg.de
Originalpublikation
Mikkel Willemoes, Roine Strandberg, Raymond H. G. Klaassen, Anders P. Tøttrup, Yannis Vardanis, Paul W. Howey, Kasper Thorup, Martin Wikelski, and Thomas Alerstam

Narrow-front loop migration in a population of the common cuckoo Cuculus canorus, as revealed by satellite telemetry

PLoSOne, 8. Januar 2014

Prof. Dr. Martin Wikelski | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7694369/orientierung_kuckuck

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik