Von Kristallstrukturen und Leuchtstoffen: RUB-Wissenschaftler leiten eigene Nachwuchsgruppen

Zwei neue Nachwuchsforschungsgruppen hat die Deutsche Forschungsgemeinschaft (DFG) im Rahmen ihres Emmy Noether-Programms an der Ruhr-Universität eingerichtet: Dr. Michael Seitz (Lehrstuhl für Anorganische Chemie I) und Dr. Jörg Behler (Lehrstuhl für Theoretische Chemie) erhalten für fünf Jahre finanzielle Unterstützung für ihre Forschung und die Leitung einer eigenen Nachwuchsgruppe.

Die hervorragende personelle und technische Ausstattung der Forschungsteams macht den Weg frei für eine möglichst frühe wissenschaftliche Selbstständigkeit. Die Forscher sind Mitglieder im neu gegründeten Research Department „Interfacial Systems Chemistry“ (IFSC) der RUB. Innerhalb von fünf Jahren sollen sich Seitz und Behler durch dieses 'Gesamtpaket' als Hochschullehrer qualifizieren.

Mit Lanthanoiden durch die Haut sehen

Seitz erforscht mit seiner Arbeitsgruppe eine Klasse von 15 chemischen Elementen, die so genannten Lanthanoide. Ihre einzigartige Eigenschaft ist die Lumineszenz, d.h. jedes leuchtet unter UV-Licht in einer anderen, charakteristischen Farbe. Dies soll die Basis für zwei innovative Anwendungen sein: Bei der sog. Lumineszenz-Nanocodierung setzt Seitz einzelne Lanthanoide in unterschiedlicher Weise zusammen. Er erzeugt so eine Vielzahl farbig-lumineszierender, molekularer Codes. Markiert man Moleküle mit diesen Codes, lassen sie und ihre Wechselwirkungen sich verfolgen.

Dank der unterschiedlichen Farbzusammensetzungen ist es möglich, mehrere Objekte gleichzeitig zu beobachten, ohne sie zu verwechseln. Die Methode eignet sich vor allem für biochemische Untersuchungen. Der zweite Bereich ist das Bioimaging, die medizinische in-vivo-Diagnostik. Seitz versucht, mit Hilfe von Lumineszenz-Sonden direkt durch biologisches Gewebe hindurch Bilder zu erzeugen. Bisherige bildgebende Methoden wie die Positronen-Emissions-Tomographie (PET) haben Nachteile, da sie z.B. mit radioaktiven Substanzen arbeiten. Ziel ist es daher, schonendere Methoden mit gleicher Leistung zu entwickeln. Grundlage dafür ist, dass biologisches Gewebe für Lichtwellenlängen im nahen Infrarot-Bereich des Spektrums (ca. 700-1100 nm) nahezu transparent ist.

Ein Kontrastmittel im Körper, das in diesem Spektralbereich luminesziert, kann damit von außen direkt durch die Haut lokalisiert werden. Die dabei verwendete Strahlung, im Wesentlichen Wärmestrahlung, ist völlig harmlos. Die Lanthanoiden-Lumineszenz ist besonders für solche neuen Kontrastmittel geeignet, vor allem wegen ihrer sehr langen Lumineszenz-Abklingzeiten, was eine Detektion technisch sehr viel einfacher macht.

Mit „künstlichen neuronalen Netzen“ Oberflächenstrukturen bestimmen

Behler beschäftigt sich mit Computersimulationen chemischer Vorgänge. Er arbeitet an einer neuen Methode zur effizienteren Beschreibung der Wechselwirkungen zwischen Atomen in komplexen chemischen Systemen. Seit der Entwicklung der Quantenmechanik ist es zwar im Prinzip möglich, chemische Reaktionen exakt zu berechnen, allerdings ist der damit verbundene Rechenaufwand für die meisten chemischen Fragestellung so hoch, dass diese Rechnungen selbst auf modernsten Supercomputern nicht durchführbar sind. Behler kombiniert nun in seinem Ansatz die Ergebnisse genauer quantenmechanischer Rechnungen mit Erkenntnissen aus der Bioinformatik.

Mit so genannten 'künstlichen neuronalen Netzen' beschreibt er die chemischen Bindungen zwischen Atomen. Dadurch können diese etwa 100.000-mal schneller berechnet werden – mit fast derselben Genauigkeit. Ziel dieser Entwicklungen sind zwei Anwendungsbereiche: Zum Beispiel lässt sich mit den 'künstlichen neuronalen Netzen' die Kristallstruktur von Stoffen bestimmen. Diese wiederum lässt Rückschlüsse auf die Stabilität und die mechanischen Eigenschaften zu, die unter hoher Temperatur oder hohem Druck bestehen. Zudem untersucht die Gruppe um Behler chemische Reaktionen an Festkörperoberflächen, was besonders in der Materialwissenschaft von Bedeutung ist. Im Sonderforschungsbereich 558 'Metall-Substrat-Wechselwirkungen in der heterogenen Katalyse' der RUB erforschen sie z.B. die Struktur von Kupferpartikeln auf Oxidoberflächen. Kupferpartikel dienen in der chemischen Industrie als Katalysator bei der Herstellung von Methanol, einer wichtigen Grundchemikalie. Um die Wirkungsweise der Kupferpartikel zu verstehen, muss man deren Struktur genau kennen.

Emmy Noether-Programm

Die Nachwuchsgruppe wird im Rahmen des Emmy Noether-Programms der DFG gefördert. Ziel des Programms ist es, herausragenden Wissenschaftlerinnen und Wissenschaftlern die Möglichkeit zu geben, sich durch die verantwortliche Leitung einer Nachwuchsgruppe zügig als Professorin oder als Professor zu qualifizieren. Voraussetzung für die Förderung sind herausragende wissenschaftliche Arbeiten und internationale Forschungserfahrung. Bei der Auswahl der Hochschule, an der sie ihre Nachwuchsgruppe einrichten, lässt die DFG ihnen freie Wahl. Benannt ist das Programm der DFG nach der in Erlangen geborenen Mathematikerin Emmy Noether (1882-1935).

Weitere Informationen

Dr. Michael Seitz, Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie und Biochemie, NC 3/32, Telefon: 0234 32-24180, E-Mail: Michael.Seitz@rub.de

Dr. Jörg Behler, Lehrstuhl für Theoretische Chemie, Fakultät für Chemie und Biochemie, NC 03/50, Telefon:0234 32-26749, E-Mail: Joerg.Behler@theochem.rub.de

Angeklickt:

Weitere Informationen zu Michael Seitz Forschung: http://www.lanthanoid.org

Weitere Informationen zu Jörg Behlers Forschung: http://www.theochem.rub.de/research/behler

Weitere Informationen zum Research Department „Interfacial Systems Chemistry“: http://www.rub.de/ifsc

Redaktion: Julia Brosig

Media Contact

Dr. Josef König idw

Weitere Informationen:

http://www.ruhr-uni-bochum.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer