Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Krebsgen bremst sich selbst

18.02.2011
Krebs kann entstehen, wenn Gene außer Kontrolle geraten.

Über einen Rückkopplungsmechanismus, der das verhindert, berichten Wissenschaftler vom Biozentrum der Uni Würzburg in der Fachzeitschrift „Molecular Cell“.


Eine Brustkrebszelle (gelb) unter dem Elektronenmikroskop. Wissenschaftler vom Biozentrum der Universität Würzburg beschreiben jetzt in der Zeitschrift „Molecular Cell“ einen Rückkoppelungsmechanismus, der die Aktivität des Krebsgens Myc reguliert. Bild: Kristian Pfaller

Krebs entsteht, wenn das Gleichgewicht zwischen der Teilung, dem Wachstum und dem Tod von Zellen gestört ist. Das macht die Behandlung dieser Krankheit so schwierig: Die Therapie darf nicht radikal sein, sondern muss maßvoll ausfallen. Es ist, als wolle man einen Hausbrand nicht löschen, sondern lediglich eindämmen – so dass es nur im Kamin brennt und sonst nirgends.

Damit dieser Balanceakt im Körper gelingen kann, muss zunächst klar sein, wie das Zellwachstum grundsätzlich reguliert wird. Auf diesem Gebiet ist Theresia Kress aus der Arbeitsgruppe von Professor Martin Eilers vom Biozentrum der Universität Würzburg eine wichtige Entdeckung gelungen: Sie hat in Zusammenarbeit mit einem internationalen Team einen Rückkopplungsmechanismus gefunden, der die Aktivität des wachstumsfördernden „Krebsgens“ Myc auf das richtige Maß einpegelt. Der Mechanismus spielt möglicherweise bei der Entstehung von Darmkrebs eine wichtige Rolle.

Was das „Krebsgen“ Myc bewirkt

Das Myc-Gen erzeugt den so genannten Transkriptionsfaktor Myc. Der reguliert eine Vielzahl anderer Gene und treibt auf diese Weise das Wachstum und die Vermehrung von Zellen voran. Gerät das Myc-Gen außer Kontrolle, lässt es Zellen ungebremst wachsen – darum wird es auch als „Krebsgen“ bezeichnet.

Wie aber merkt eine Zelle, dass genügend Myc vorhanden ist? Als möglichen Signalgeber hierfür hatten Eilers und sein Team eine bestimmte Enzymsorte im Auge, die so genannten Proteinkinasen. Also schaltete Theresia Kress all diese Kinasen einzeln aus und untersuchte, was dann passierte.

Bremsendes Molekül nachgewiesen

Die Strategie hatte Erfolg: Die Forscher fanden heraus, dass die Proteinkinase MK5 die Aktivität von Myc hemmt, also das Zellwachstum bremst. Zudem klärten sie, wie die Myc-Hemmung im Detail funktioniert und welche anderen Gene und Moleküle daran beteiligt sind.

Vor allem aber konnten Kress und Eilers zeigen, dass die Proteinkinase wiederum von Myc aktiviert wird. So schließt sich der Rückkopplungs-Kreis: Je mehr wachstumsförderndes Myc in der Zelle vorhanden ist, umso mehr Hemmstoff wird produziert – auf diese Weise bremst Myc sich selbst, das Zellwachstum bleibt in Balance.

Bei einer weiteren Untersuchung stellte sich heraus: In Darmkrebszellen ist genau dieser Rückkopplungsmechanismus außer Kraft gesetzt. Das könnte eine der Ursachen für die Krebsentstehung sein und damit möglicherweise ein Ansatzpunkt für die Entwicklung einer Therapie.

Publiziert in „Molecular Cell“

Detailliert sind die Ergebnisse in der aktuellen Ausgabe der renommierten Fachzeitschrift „Molecular Cell“ beschrieben. Die Arbeit wurde im Rahmen des Forschungsprojekts Growthstop durchgeführt, das von der Europäischen Union gefördert und von der Innsbrucker Projektmanagement-Firma CEMIT koordiniert wird.

EU-Projekt Growthstop

Growthstop ist ein Forschungsprojekt des 6. Europäischen Forschungsrahmenprogramms (FP6). Ziel ist die Identifizierung, Entwicklung und Validierung neuer Therapeutika, die den programmierten Zelltod in Tumoren herbeiführen. Das Konsortium hat zwölf Mitglieder aus Österreich, Deutschland, Israel, Großbritannien, Spanien und Ungarn. Sein Leiter ist Professor Lukas A. Huber, Direktor des Biozentrums der Medizinischen Universität Innsbruck. Das Projekt läuft seit 2006 bis voraussichtlich Mitte 2011.

„The MK5/PRAK Kinase and Myc Form a Negative Feedback Loop that Is Disrupted during Colorectal Tumorigenesis”, Theresia R. Kress, Ian G. Cannell, Arjan B. Brenkman, Birgit Samans, Matthias Gaestel, Paul Roepman, Boudewijn M. Burgering, Martin Bushell, Andreas Rosenwald and Martin Eilers. Molecular Cell, Volume 41, Issue 4, Seiten 445-457, 18. Februar 2011, DOI 10.1016/j.molcel.2011.01.023

Kontakt

Prof. Dr. Martin Eilers, Biozentrum der Universität Würzburg, T (0931) 31-84111, martin.eilers@biozentrum.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Buche in die Gene schauen - Vollständiges Genom der Rotbuche entschlüsselt
11.12.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Mit den Augen der Biene: Zoologe der Uni Graz entwickelt Verfahren zur Verbesserung dunkler Bilder
11.12.2017 | Karl-Franzens-Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit