Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krankheitsforschung ohne Umwege

13.01.2014
Wissenschaftler, die die Ursachen wichtiger Erkrankungen erforschen und Therapien entwickeln, sind auf geeignete Modellorganismen angewiesen. Forscher der Universität Bonn haben nun eine neuartige Methode entwickelt, mit der sich solche maßgeschneiderten Krankheitsmodelle effizienter erschaffen lassen. Die Technologie kürzt den herkömmlichen Weg um rund ein Jahr ab. Die Ergebnisse werden jetzt in „Nature Communications“ vorgestellt.

Wie funktioniert das Immunsystem? Für welche Funktionen ist ein bestimmtes Gen verantwortlich? Wissenschaftler untersuchen solche medizinischen und biologischen Fragestellungen, um drängende Fragen zu Erkrankungen zu beantworten.

Sie schalten hierfür in Modellorganismen bestimmte Gene in Immunzellen aus oder fügen ein künstliches Erbgutstück mit neuen Eigenschaften, z.B. ein fluoreszierend leuchtendes Reporterprotein, hinzu. Hierdurch kann dann die Wirkungsweise und Lokalisation dieser Proteine näher untersucht werden.

Ein wichtiges Protein für die Funktion von Immunzellen ist SATB1; ein Faktor, der an der Ablesung der DNA beteiligt und für die Aktivierung von Immunzellen notwendig ist, um bei einer Infektion die eindringenden Mikroorganismen wirkungsvoll zu bekämpfen. „Dann beobachten wir, welche Folgen diese Veränderungen in der Expression von SATB1 für Immunzellen haben und können daraus auf die Funktionsweise des untersuchten Gens schließen“, sagt Dr. Marc Beyer vom Life and & Medical Sciences (LIMES) Institut der Universität Bonn.

Voraussetzung für die Untersuchung solch wichtiger immunologischer Fragestellungen sind geeignete Tiermodelle. „Die Herstellung dieser Modelle ist ein sehr zeit- und arbeitsaufwendiger Prozess“, erklärt Dr. Beyer. Inklusive aller Vorarbeiten und Kreuzungsversuche dauere es im Schnitt ein bis zwei Jahre, bis zum Beispiel ein neues Modell in der Maus etabliert wird. Für die Generierung neuer Mausmodelle greifen die Wissenschaftler bislang auf embryonale Stammzellen der Tiere zurück. Die Gene in den Stammzellen werden verändert und anschließend in einen Embryo implantiert, aus dem dann der Organismus heranwächst.

Mit speziellen Erbgutscheren lässt sich der Weg abkürzen

Wissenschaftler des LIMES-Instituts der Universität Bonn und des Hauses für experimentelle Therapie des Universitätsklinikums Bonn haben nun eine neue Methode entwickelt, mit der sich der Weg zum gewünschten Tiermodell um etwa ein Jahr abkürzen lässt. Sie nutzten sogenannte „TALENs“ (Transcription activator-like effector nucleases), mit denen sie den Erbgutstrang von Mäusen an einer bestimmten Stelle durchschnitten. Diese neuen Erbgutscheren verwenden Wissenschaftler erst seit einigen Jahren, um Genveränderungen auf Zellebene durchzuführen. „Unserem Team gelang es nun erstmals, mit den TALENs künstliches Erbgut direkt in das Genom eines lebenden Organismus einzubringen“, berichtet der Forscher der Universität Bonn. Die aufwendigen Vorarbeiten mit den Stammzellen entfielen dabei.

Die Wissenschaftler injizierten die TALENs zusammen mit einem künstlichen DNA-Abschnitt in die befruchtete Eizelle einer Maus. Die Genscheren schnitten dabei den Erbgutdoppelstrang an einer ganzen bestimmten Stelle durch, wodurch sich das künstliche Erbgutstück dort automatisch einfügte. Dabei nutzten die Wissenschaftler den natürlichen Mechanismus aus, mit dem Zellen Erbgutveränderungen reparieren. Die auf diese Weise veränderte Eizelle wurde dann von einer anderen Maus ausgetragen. Daraus entstand ein Tier, mit dem sich jetzt die Funktion von SATB1 in unterschiedlichen Immunzellen einfach untersuchen lässt.

Viele aufwendige Schritte entfallen

„Bei unserer Methode entfallen viele aufwendige Schritte, die bei der herkömmlichen Technik erforderlich sind“, sagt der LIMES-Forscher. Die Wissenschaftler stellten unter Beweis, dass sich mit der neuen Methode auch sehr komplexe DNA-Fragmente in Modellorganismen einbringen lassen. „Mit den TALENs ist es gelungen, ein neues Verfahren zu entwickeln, mit dem neue Mauslinien, z.B. auch für Krankheitsmodelle, auf relativ einfache Weise etabliert werden können“, resümiert der Forscher. Damit werde eine wichtige Grundlage geschaffen, um mit Hilfe von Tiermodellen drängende Fragen in der Medizin und den Grundlagenwissenschaften effizienter zu erforschen.

Für die Funktion von SATB1 bedeutet dies, dass die Forscher in T Lymphozyten jetzt durch die Kreuzung mit anderen Mauslinien SATB1 spezifisch ausschalten können und die Frage beantworten werden, wie SATB1 die Antwort des Immunsystem gegen Krankheitserreger kontrolliert.

Publikation: Efficient genome engineering by targeted homologous recombination in mouse embryos using transcription activator-like effector nucleases”, Nature Communications, DOI: 10.1038/ncomms4045

Kontakt:

Dr. Marc Beyer
LIMES (Life and Medical Sciences Bonn)
University of Bonn
Tel. 0228-73-62792
E-Mail: marc.beyer@uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie