Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krabbenschalen als Rohstoff für Chemikalien

21.11.2011
In dem von der EU geförderten Projekt ChiBio will die Straubinger Projektgruppe BioCat des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB mit internationalen Partnern neue Verfahren entwickeln, um aus chitinhaltigen Fischereiabfällen Spezial- und Feinchemikalien herzustellen.

Krabben, Krebse und Garnelen sind geschätzte Leckerbissen. Mehr als 750 000 Tonnen Schalen dieser Krebstiere landen allein in der EU pro Jahr auf dem Müll. Dabei könnten theoretisch auch die Schalen genutzt werden. Sie bestehen aus Chitin, einem auch in Insekten und Pilzen vorkommenden Biopolymer aus kettenartig aneinandergereihten, stickstoffhaltigen Zuckermolekülen.

In Asien beispielsweise wird aus Garnelenschalen bereits das Polymer Chitosan hergestellt, welches als Filter oder Folie, aber auch als Wundauflage Anwendung findet. Die Schalen der europäischen Krebstiere enthalten allerdings mehr Kalk, die Aufarbeitung zu Chitosan ist daher nicht wirtschaftlich.

In dem von der EU geförderten Projekt ChiBio wollen Forscher unter der Leitung der Straubinger Projektgruppe BioCat des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB neue Verfahren entwickeln, um die in großen Mengen als Abfall anfallenden Schalen auch hierzulande als Rohstoff für Chemikalien und neue Materialien zu erschließen. Das Konsortium mit Forschungs- und Industriepartnern aus Norwegen, Österreich, Tschechien, Irland sowie Tunesien und Indonesien setzt dabei auf einen ganzheitlichen und umfassenden Ansatz. »Nach Art einer Bioraffinerie für landwirtschaftliche Produkte wollen wir für den Abfall Krabbenschale verschiedene stoffliche und energetische Nutzungswege entwickeln oder optimieren – und so den Reststoff möglichst effizient und vollständig verwerten«, erläutert Prof. Dr. Volker Sieber, Koordinator von ChiBio und Leiter der Projektgruppe BioCat in Straubing.

Zunächst müssen die Reste des Krebsfleisches von den Schalen entfernt werden. »Diese Biomassereste, die aus Proteinen und Fetten bestehen, wollen wir so abtrennen, dass wir sie direkt vergären und energetisch nutzen können«, sagt Dr. Lars Wiemann, ChiBio-Projektleiter in Straubing. Das gereinigte Chitin kann dann mit Enzymen oder Mikroorganismen in seine monomeren Bausteine, den stickstoffhaltigen Zucker Glucosamin, gespalten werden. Am Fraunhofer IGB wurden bereits Chitinasen aus Bakterien isoliert, die diese Abspaltung katalysieren. »Eine große Herausforderung wird sein, Glucosamin zu solchen Grundbausteinen – oder Plattformchemikalien – umzusetzen, aus denen Chemiker verschiedene neue, biobasierte Polymere herstellen können«, erzählt Dr. Wiemann. Damit einzelne Monomere zu einem Polymer verknüpft werden können, benötigen diese mindestens zwei funktionelle Gruppen, die katalytisch miteinander verbunden werden können. »Hier wollen wir chemische Schritte mit biotechnologischen Verfahren kombinieren«, ergänzt Prof. Sieber. Alle in der Prozesskette anfallenden biobasierten Nebenprodukte sollen gemeinsam mit den anfänglich abgetrennten Proteinen und Fetten zu Biogas als regenerativem Energieträger vergoren werden.

Der EU-Forschungsantrag »ChiBio – Entwicklung einer integrierten Bioraffinerie für die Aufarbeitung von chitinhaltigen Abfällen zu Spezial- und Feinchemikalien« erhielt mit 14 von 15 möglichen Punkten das beste Ergebnis in der Ausschreibung »Neue biotechnologische Ansätze zur Umwandlung industrieller und/oder städtischer Abfälle in Bioprodukte«. Die Fördersumme von 3 Millionen Euro wird ab November 2011 für die Projektlaufzeit von drei Jahren bereitgestellt. Regionale Partner sind die Arbeitsgruppe Industrielle Biokatalyse von Prof. Dr. Thomas Brück an der TU München in Garching und die Süd-Chemie AG in Moosburg aus Bayern sowie das tschechische Unternehmen Apronex und das oberösterreichische Energieinstitut an der Johannes Kepler Universität Linz GmbH. Weiterhin sind beteiligt Letterkenny Institute of Technology (Letterkenny, Irland), Agricultural University of Norway (Oslo, Norwegen), Institut National des Sciences et Technologies de la Mer (Karthago, Tunesien), Earagail Eisc Teoranta (Carrick, Irland), Evonik Industries AG (Essen) und Biotech Surindo PT (Cirebon, Indonesien).

Die Projektgruppe BioCat ist Teil des Wissenschaftszentrums Straubing am Kompetenzzentrum für Nachwachsende Rohstoffe. Sie ist dem von Prof. Dr. Thomas Hirth geleiteten Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart zugeordnet und wird von Prof. Dr. Volker Sieber, Inhaber des Lehrstuhls für Chemie Biogener Rohstoffe der TU München, geleitet.

Dr. Claudia Vorbeck | Fraunhofer-Institut
Weitere Informationen:
http://www.igb.fraunhofer.de/de/presse-medien/presseinformationen/2011/krabbenschalen-als-rohstoff-fuer-chemikalien.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise