Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Knochenkiller Kortison: Ursache der Glukokortikoid-bedingten Osteoporose aufgeklärt

09.06.2010
Osteoporose ist eine häufige Nebenwirkung bei Langzeittherapien mit Kortison. Wissenschaftler vom Fritz-Lipmann-Institut (FLI) in Jena haben nun die Ursache dieses Knochenschwundes entdeckt: Glukokortikoide hemmen die Knochenneubildung. Neue Hoffnung auf nebenwirkungsarme Kortison-Therapien.

Die Knochen werden dünn und brüchig. Schon bei kleinen Stürzen droht eine Fraktur. Osteoporose – Knochenschwund – ist eine häufige Nebenwirkung von Langzeittherapien mit Kortison. Das Glukokortikoid-Hormon Cortisol, bzw. seine verabreichte Form Kortison, wirkt entzündungshemmend und wird daher zur medizinischen Behandlung von allergischen Erkrankungen und von starken bzw. chronischen Entzündungen wie Rheuma eingesetzt. Als körpereigenes Hormon reguliert es eigentlich den Glukose-Stoffwechsel, als stark dosiertes oder über längere Zeit verabreichtes Medikament kann es aber auch Knochenschwund, Muskelschwäche und dünne Haut verursachen.

Wissenschaftler des Leibniz-Instituts für Altersforschung – Fritz-Lipmann-Institut (FLI) in Jena haben nun die molekularen Mechanismen der Kortison-vermittelten Osteoporose aufgedeckt. Die Molekularbiologen aus der Forschergruppe von Dr. Jan Peter Tuckermann konnten zudem nachweisen, dass der durch Langzeit-Therapien mit Kortison hervorgerufene Knochenschwund eine Folge des gestörten Knochenaufbaus ist. „Osteoporose entsteht dann, wenn das Gleichgewicht zwischen Knochenaufbau und Knochenabbau gestört ist“, erläutert Gruppenleiter Tuckermann. Diese delikate Balance besteht zwischen Osteoblasten, also den knochenaufbauenden Zellen, und Osteoklasten, die Knochensubstanz abbauen.

„Bisher glaubte man, dass der Kortison-vermittelte Knochenschwund durch einen verstärkten Knochenabbau verursacht wird“, erklärt Doktorand Alexander Rauch. „Wir können nun aber zeigen, dass bei der kortisonbedingten Osteoporose die Neubildung von Knochenzellen, also der Knochenaufbau gestört ist“, so der Mitarbeiter der Arbeitsgruppe Tuckermann weiter. Die Forscher vom FLI konnten erstmals nachweisen, dass die Nebenwirkungen bei der Behandlung mit Glukokortikoid-Hormonen über einen zelltyp-spezifischen Mechanismus vermittelt werden. Überraschenderweise sind nur die knochenaufbauenden Zellen (Osteoblasten) für den kortisonbedingten Knochenschwund entscheidend und eben nicht die knochenabbauenden Osteoklasten.

Dabei kam auch ans Licht, dass bei der Entstehung dieser Osteoporose-Art die molekulare Form des Glukokortikoid-Rezeptors eine Schlüsselrolle spielt. An diesen Rezeptor dockt das Glukokortikoid-Hormon an, wodurch unterschiedliche genetische und molekulare Mechanismen in Gang gesetzt werden können. Entscheidend für seine biologische Funktion ist die molekulare Form dieses Rezeptors, in der dieser aktiviert wird. Als Doppelmolekül (Dimer) spielt er insbesondere bei der Regulation des Zuckerstoffwechsels eine Rolle. Als Einzelmolekül (Monomer) ist er entscheidend für die entzündungshemmende Wirkung der Glukokortikoid-Hormone.

Die Jenaer Molekularbiologen konnten nun zeigen, dass auch die Hemmung der Knochenbildung über den Glukokortikoid-Rezeptor als Einzelmolekül vermittelt wird. Die kortisonbedingte Osteoporose hängt also von der monomeren Form des Rezeptors ab. „Bei der Kortisonbehandlung werden Entzündungshemmung und Knochenschwund über denselben molekularen Monomer-Mechanismus vermittelt“, so Tuckermann. „Die schlechte Nachricht ist also, dass hier die positive Therapiewirkung mit der negativen Nebenwirkung sehr eng miteinander verbunden ist“, erklärt der Biologe weiter.

„Es gibt aber auch eine gute Nachricht“, sagt der FLI-Forscher. „Wir sind zuversichtlich, dass es bald gelingt, diese ‚unheilige Allianz‘ zwischen Therapieeffekt und Nebenwirkung durch die Entwicklung neuer Glukokortikoide aufzubrechen“, so Tuckermann. Für alle Patienten, die auf die Behandlung mit Kortison bzw. Prednisolon angewiesen sind, bedeutet dies Hoffnung auf neue nebenwirkungsarme Therapien.

Der Hintergrund: als Doppelmolekül wirkt der Glukokortikoid-Rezeptor selbst als Genschalter. Als Einzelmolekül (Monomer) hemmt er andere Transkriptionsfaktoren wie AP-1 und NFkB. Durch die Hemmung von NFkB kommt es zum Rückgang der Entzündungsreaktion. Die Abschaltung von AP-1 dagegen löst den Knochenschwund aus. „Durch die Entwicklung selektiv wirksamer Glukokortikoide, die ausschließlich den Entzündungsfaktor NFkB hemmen ohne gleichzeitig AP-1 abzuschalten, könnte der Knochen unversehrt bleiben“, erklärt Tuckermann. Denn AP-1 aktiviert die Produktion von Interleukin 11, einem interzellulären Botenstoff, der die Zelldifferenzierung reguliert. Fehlt dieser, können die Osteoblasten-Vorläuferzellen nicht ausreifen, was wiederum die Knochenbildung stört. Osteoporose entsteht.

Auch für die Altersforschung sind die Nebenwirkungen von therapeutisch eingesetzten Glukokortikoid-Hormonen von großem Interesse. Nicht zufällig gleichen die Nebenwirkungen der Kortisonbehandlung den Krankheitsbildern bestimmter altersassoziierter Erkrankungen. Hierzu zählen neben der Osteoporose, der Bindegewebs- und Muskelschwäche auch Diabetes und Depressionen. „Welche Rolle dabei das körpereigene Glukokortikoid-Hormon spielt, wollen wir in unseren Folgeprojekten klären“, so Tuckermann.

Informationen zur Methode
Die Mechanismen der Glukokortikoid-bedingten Osteoporose konnten die Wissenschaftler aufde-cken, indem sie Mäuse mit unterschiedlicher genetischer Konstitution mit dem Glukokortikoid Prednisolon behandelten und deren Knochen miteinander verglichen. Bei den einen fehlte der Glukokortikoid-Rezeptor ausschließlich in den Osteoblasten, bei den anderen in den Osteoklasten. Untersucht wurden zudem Mäuse, in denen die Dimerisierungsfähigkeit des Rezeptors ausgeschaltet war.

Dabei stellte sich heraus: Entscheidend für die Verringerung von Knochenbildungsrate und Kno-chendicke ist die Wirkung des Glukokortikoid-Rezeptors in den Osteoblasten – also den knochenaufbauenden Zellen. Mäuse, denen der Glukokortikoid-Rezeptor in den Osteoblasten fehlte, zeigten keinen Knochenverlust bei der Behandlung mit Prednisolon. Knochenschwund zeigten auch diejenigen Mäuse, bei denen ausschließlich die Dimerisierungsfunktion des Rezeptors ausgeschaltet war. Gemessen wurde mit Hilfe von Fluoreszenzmikroskopie und Computertomographie die Knochenbildungsrate, Knochendichte und -struktur.

Beteiligt an dem Forschungsprojekt waren Wissenschaftler der Universitäten in Hamburg, Erlangen und Göttingen sowie das Deutsche Krebsforschungszentrum (DKFZ) in Heidelberg.

Kontakt:
Dr. Jan Peter Tuckermann, Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI)

Beutenbergstr. 11, D-07745 Jena, Tel. 03641 656134, Fax 03641 656133, jan@fli-leibniz.de

Originalveröffentlichung:
Rauch A, Seitz S, Baschant, U, Schilling AF, Illing A, Stride B, Kirilov M, Mandic V, Takacz A, Schmidt-Ullrich R, Ostermay S, Schinke T, Spanbroek R, Zaiss M, Angel PE, Lerner UH, David JP, Reichard HM, Amling M, Schütz G, Tuckermann J.
Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor.

Cell Metabolism 2010, Jun 9;11(6):517-531

Dr. Eberhard Fritz | idw
Weitere Informationen:
http://www.fli-leibniz.de/groups/tuckermann.php
http://www.fli-leibniz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfade ausleuchten im Fischgehirn
24.07.2017 | Max-Planck-Institut für Neurobiologie

nachricht Netzwerke statt Selbstversorgung: Wiesenorchideen überraschen Bayreuther Forscher
24.07.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Recherche-Reise zum European XFEL und DESY nach Hamburg

24.07.2017 | Veranstaltungen

Internationale Konferenz zu Sprachdialogsystemen und Mensch-Maschine-Kommunikation in Saarbrücken

24.07.2017 | Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Power-to-Liquid: 200 Liter Sprit aus Solarstrom und dem Kohlenstoffdioxid der Umgebungsluft

24.07.2017 | Energie und Elektrotechnik

Innovationsindikator 2017: Deutschland auf Platz vier von 35, bei der Digitalisierung nur Rang 17

24.07.2017 | Studien Analysen

Netzwerke statt Selbstversorgung: Wiesenorchideen überraschen Bayreuther Forscher

24.07.2017 | Biowissenschaften Chemie