Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die kleinen Unterschiede

28.10.2010
1.000 Genome-Projekt veröffentlicht Analyse der abgeschlossenen Pilotphase

Kleine genetische Unterschiede zwischen einzelnen Personen helfen zu erklären, warum einige Menschen eher an Krankheiten wie Diabetes oder Krebs erkranken können als andere.

Bislang war die Aufdeckung von Krankheitsursachen nur möglich, indem mehrere Millionen genetischer Unterschiede in Tausenden von Patienten abgefragt und gegen die Normalpopulation verglichen wurden.

Durch einen Quantensprung in der genetischen Technologie ist es nun möglich, durch Sequenzierung ganze Genome „Buchstabe für Buchstabe“ zu lesen. Dazu muss man aber wissen wie die normale Population mit derselben Auflösung aussieht. In der renommierten Fachzeitschrift „Nature“ veröffentlicht heute das 1.000 Genome-Projekt, ein Konsortium aus öffentlich finanzierten Forschungseinrichtungen und der Industrie, die bislang umfangreichste Karte solcher genetischen Unterschiede oder „Varianten“.

Die Wissenschaftler gehen davon aus, dass die jetzt vorgelegte Arbeit etwa 95% der genetischen Varianten aller Menschen auf der Erde enthält. An dem Projekt beteiligt waren auch Wissenschaftler des Max-Planck-Instituts für molekulare Genetik in Berlin, des EMBL in Heidelberg sowie der Christian-Albrechts-Universität zu Kiel [Nature 2010, DOI: 10.1038/nature09534]

Unter genetischer Variation zwischen Menschen versteht man die Unterschiede in der Anordnung der chemischen Bausteine (Basen), aus denen das menschliche Erbmaterial (Genom) zusammengesetzt ist. Diese Unterschiede können sehr klein sein und nur auf dem Austausch einzelner Basen beruhen; sie können aber auch durch große Veränderungen wie Verdopplungen oder Umlagerungen ganzer Chromosomenregionen verursacht werden. Einige Unterschiede treten häufig in weiten Teilen der Bevölkerung auf, während andere sehr selten sind. Wissenschaftler des 1.000 Genome-Projekts untersuchten systematisch das Erbgut von 179 einzelnen Menschen aus verschiedenen Volksgruppen (Populationen). Durch den Vergleich der Einzelgenome untereinander und zwischen den verschiedenen Populationen gelang es den Forschern, einen Katalog der genetischen Varianten zu erstellen.

Das 1.000 Genome-Projekt ist ein internationales Großprojekt, das sich über mehrere Kontinente, insbesondere USA, Europa und Asien erstreckt. Wissenschaftler aus öffentlich finanzierten Forschungseinrichtungen und Technologiefirmen, die neue Sequenziertechnologien entwickeln und verkaufen, arbeiten gemeinsam daran, eine genaue Karte der genetischen Unterschiede der Menschen zu erstellen. Ihr Ziel ist es, eine öffentliche, das heißt für jedermann zugängliche Datenbank zur Verfügung zu stellen, mit deren Hilfe Forscher den Einfluss individueller genetischer Veränderungen auf verschiedene Erkrankungen besser einschätzen können. Dafür untersuchten die Wissenschaftler Menschen europäischer, westafrikanischer und ostasiatischer Herkunft. Unter Anwendung von Sequenziertechnologien der zweiten Generation wurden bislang die Genome von 179 Personen und zusätzlich die Protein-kodierenden Gene von 697 Personen sequenziert. Jeder Abschnitt der DNA wurde mehrmals sequenziert, so dass insgesamt mehr als 4,5 Terabasen (4,5 Billionen bzw. 4.500.000.000.000 einzelne Bausteine) an DNA-Sequenz gelesen wurden. Wichtigster deutscher Partner dieses internationalen Schlüsselprojekts der Genomforschung ist das Max-Planck-Institut für molekulare Genetik (MPIMG) in Berlin. „In der Pilotpase wurden am MPIMG die Genome von elf Personen untersucht“, erklärt Projektleiter Ralf Sudbrak und fügt hinzu: „Auch in der Hauptphase des Projektes werden wir mindestens 5% aller Projektdaten generieren.“

Um diese Daten verarbeiten und gemeinsam nutzen zu können, waren neben den Entwicklungen im Sequenzierbereich auch zahlreiche Innovationen im Bereich der EDV-Technik erforderlich. Dies beinhaltete auch die Entwicklung standardisierter Verfahren zur Organisation, Aufbewahrung und Analyse der entstandenen Daten. „Wir konnten beweisen, dass die Sequenzierung von Einzelgenomen effizient und erfolgreich ist“, erklärt Hans Lehrach, Mitglied im Lenkungsgremium des 1.000 Genome-Projektes und Direktor der Abteilung des MPIMG, in der die Sequenzierungsarbeiten stattfinden. „Bei bisherigen Sequenzierprojekten wie dem Humangenomprojekt wurde das Erbmaterial mehrerer Personen vermischt, um ein sogenanntes Referenzgenom zu erzeugen. Die erhaltenen Daten geben uns Informationen über das Erbmaterial aller Menschen, Aussagen über das Genom einer bestimmten Einzelperson sind daraus jedoch nicht abzuleiten.“ Dieser neue Ansatz wird nicht nur in der Hauptphase des 1.000 Genome-Projektes fortgeführt, sondern inzwischen auch bei der Erforschung von Krankheiten angewendet. „Die rasante technologische Entwicklung, gekoppelt mit den Erfahrungen aus dem 1.000 Genome-Projekt, erlaubt Initiativen wie das von uns initiierte Treat1000-Projekt, das neue Möglichkeiten für eine personalisierte Medizin schaffen soll. Dabei sollen in den nächsten Jahren die Genome von tausend Tumorpatienten sowie das veränderte Genmaterial ihrer Tumore sequenziert werden,“ so Lehrach.

Die Karte der humanen genetischen Variationen, die in der ersten Phase des 1.000 Genome-Projekts erstellt wurde, enthält 15 Millionen Positionen, an denen einzelne Basen ausgetauscht sind, eine Million kürzerer Insertions- und Deletionsveränderungen und über 20.000 strukturelle Varianten. Weniger als die Hälfte der Varianten war bereits vorher bekannt. Die Projektdatenbank umfasst mehr als 95% aller heutzutage zu messenden Varianten. Die Forscher gehen davon aus, dass sie bis zum Abschluss des Projektes 99% der Varianten identifiziert haben werden. Die jetzt vorgelegte Karte enthält bereits einige Überraschungen. So konnten die Wissenschaftler zeigen, dass jeder Mensch zwischen 250 und 300 genetische Abweichungen trägt, die die normale Funktion der betroffenen Gene verhindern. Weiterhin besitzt jeder von uns zwischen 50 und 100 genetische Variationen, die mit verschiedenen Erbkrankheiten assoziiert sind. Zum Glück besitzt jeder Mensch zwei Kopien von jedem Gen. Daher bleiben wir in der Regel gesund, solange nicht auch die zweite Kopie verändert ist.

Zusätzlich zu der Untersuchung der individuellen Genvarianten haben sich die Forscher die Genome von sechs Einzelpersonen sehr genau angeschaut. Die beiden sogenannten Kernfamilien bestanden aus jeweils einem Vater, einer Mutter und einer Tochter. Die Wissenschaftler fanden bei den Töchtern neue Varianten, die bei den Eltern nicht vorhanden waren. Sie gehen davon aus, dass bei jedem Menschen ungefähr 60 neue Mutationen auftreten, die bei den Eltern noch nicht vorhanden sind.

Mit dem Abschluß seiner Pilotphase ist das 1.000 Genome-Projekt in die sogenannte Hauptphase eingetreten. In den nächsten zwei Jahren wollen die beteiligten Gruppen insgesamt 2.500 Einzelpersonen aus 27 verschiedenen Populationen untersuchen.

Die deutsche Beteiligung am 1.000 Genome-Projekt wird durch die Unterstützung des Bundesministeriums für Bildung und Forschung ermöglicht, das die Beteiligung der Berliner Forscher im Rahmen des Programms der Medizinischen Genomforschung, NGFN-Plus, fördert.

Organisationen, die einen Hauptbeitrag zum Projekt geleistet haben, sind 454 Life Sciences, eine Roche Firma, Branford, Conn.; Life Technologies Corporation, Carlsbad, Calif.; BGI-Shenzhen, Shenzhen, China; Illumina Inc., San Diego; das Max-Planck-Institut für molekulare Genetik, Berlin, Deutschland; das Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK; und das National Human Genome Research Institute, welches die Arbeiten am Baylor College of Medicine, Houston, Texas; das Broad Institute, Cambridge, Mass.; und Washington University, St. Louis, Missouri unterstützt. Forscher an vielen anderen Instituten arbeiteten an diesem Projekt mit, u.a. Gruppen in Barbados, Kanada, China, Kolumbien, Finnland, Gambia, Indien, Malawi, Pakistan, Peru, Puerto Rico, Spanien, Großbritannien, den USA, und Vietnam. Auch zwei weitere deutsche Gruppen, das EMBL in Heidelberg und die Christian-Albrechts-Universität zu Kiel waren involviert.

Orginalveröffentlichung:
The 1000 Genomes Project Consortium: A map of human genome variation from population scale sequencing. Nature 2010, DOI: 10.1038/nature09534
Kontakt:
Dr. Ralf Sudbrak
Max-Planck-Institut für molekulare Genetik
Tel.: +49 30 8413-1612
Fax: +49 30 8413-1380
Email: sudbrak@molgen.mpg.de
Prof. Dr. Stefan Schreiber
Christian-Albrechts-Universität zu Kiel
Email: s.schreiber@mucosa.de
Prof. Dr. Philip Rosenstiel
Christian-Albrechts-Universität zu Kiel
Tel.: +49 431 597-1333
Email: p.rosenstiel@mucosa.de

Dr. Patricia Marquardt | Max-Planck-Institut
Weitere Informationen:
http://www.1000genomes.org/
http://www.treat1000.org/
http://www.molgen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Genetische Vielfalt schützt vor Krankheiten
23.05.2018 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt
22.05.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Im Focus: Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

Um chemische Gemische in ihre Einzelbestandteile aufzutrennen, ist in der Industrie die energieaufwendige Destillation gängig, etwa bei der Raffinerie von Rohöl. Forscher der Technischen Universität Kaiserslautern (TUK) entwickeln ein Kamerasystem, das diesen Prozess überwacht. Dabei misst es, ob es zu einer starken Tropfenbildung kommt, was sich negativ auf die Trennung der Komponenten auswirken kann. Die Technik könnte hier künftig automatisch gegensteuern, wenn sich Messwerte ändern. So ließe sich auch Energie einsparen. Auf der Prozesstechnik-Messe Achema in Frankfurt stellen sie die Technik vom 11. bis 15. Juni am Forschungsstand des Landes Rheinland-Pfalz (Halle 9.2, Stand A86a) vor.

Bei der Destillation werden Flüssigkeiten durch Verdampfen und darauffolgende Kondensation des Dampfes in ihre Bestandteile getrennt. Ein bekanntes Beispiel...

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rotierende Rugbybälle unter den massereichsten Galaxien

23.05.2018 | Physik Astronomie

Invasive Quallen: Strömungen als Ausbreitungsmotor

23.05.2018 | Ökologie Umwelt- Naturschutz

Matrix-Theorie als Ursprung von Raumzeit und Kosmologie

23.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics