Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleine Organismen – große Herausforderung

25.08.2014

Bioinformatiker der Uni Jena wollen Handwerkszeug zur computergestützten Analyse von Viren-Genomen verbessern

Ebola-Ausbruch in Westafrika: Seit Monaten grassiert die gefährliche Krankheit in Guinea, Sierra Leone und Liberia; immer wieder gibt es neue Fälle.


Bioinformatikerin Jun.-Prof. Dr. Manja Marz von der Uni Jena hat in einer aktuellen Arbeit den Forschungsbedarf aufgezeigt, der in Sachen computergestützter Analyse von Viren-Genomdaten besteht.

Foto: Anne Günther/FSU

Mehr als tausend Tote hat die schlimmste Epidemie seit Entdeckung des Ebola-Virus im Jahr 1976 bereits gefordert und noch immer bekommen Ärzte und Helfer die Epidemie nicht in den Griff. Auch wenn die Gründe dafür vor allem in mangelnder Aufklärung und nicht eingehaltenen Quarantänemaßnahmen liegen – vieles über die hochansteckende Krankheit und ihre Erreger ist auch heute noch rätselhaft:

Woher kommen die Ebola-Viren? Wie verbreitet sind sie und wie schaffen sie es, immer wieder in neuer Form aufzutreten?

Diese und ähnliche Fragen könne nicht allein die Virologie beantworten, ist Juniorprof. Dr. Manja Marz von der Friedrich-Schiller-Universität Jena überzeugt. „Hier ist Unterstützung aus der Bioinformatik gefragt.“ Um Struktur, Funktion und Evolution von Viren aufzuklären und zu verstehen, gelte es, computergestützte Methoden zielgerichtet einzusetzen, um große Datenmengen etwa Genomsequenzen zu analysieren, erläutert die Juniorprofessorin für Bioinformatik für Hochdurchsatzverfahren.

Genau das hat sich das junge Team um Manja Marz gemeinsam mit Bioinformatikern und Virologen aus ganz Deutschland sowie internationalen Partnern nun vorgenommen und in einer aktuellen Übersichtsarbeit den weltweiten Forschungsstand zur Analyse von Genomdaten von RNA-Viren zusammengetragen. Mit ihrer Publikation in der Fachzeitschrift „Bioinformatics“ haben sie nicht nur ein Fundament gelegt, von dem aus sie in den kommenden Jahren weiter forschen wollen. „Wir haben damit auch den großen Forschungsbedarf aufgezeigt, der in Sachen computergestützter Analyse von Viren-Genomdaten besteht“, so Manja Marz (DOI: 10.1093/bioinformatics/btu105).

Denn auch wenn Viren die ersten Organismen überhaupt waren, deren Genome entschlüsselt wurden und heute wichtige Vertreter wie das HI-Virus sequenziert sind, friste die Genomanalyse von Viren insgesamt ein Schattendasein. „Da die Genome des Menschen sowie Hunderter höherer Organismen vorliegen, interessieren sich nur wenige Forscher für Viren“, bedauert die 33-Jährige. Dass sich ein grundlegendes Verständnis für die Evolution von Virengenomen direkt im klinischen Alltag niederschlagen könne, belegt sie mit einem Beispiel: „Erst die bioinformatische Analyse von Genomvariationen des HI-Virus hat zur Entwicklung patientenspezifischer Behandlungsstrategien gegen AIDS geführt.“

In der nun vorgelegten Arbeit haben die Forscher vier große Bereiche abgesteckt, in denen der Forschungsbedarf am deutlichsten zutage tritt. So bereite es Schwierigkeiten neue Virengenome überhaupt zu identifizieren: „Viren können ausschließlich in Zellen ihres Wirtsorganismus überleben und sich vermehren“, so Marz. Entsprechend schwierig sei es, das Genom der Viren von dem des Wirtsorganismus zu trennen. Zudem kommen Viren auch innerhalb eines Wirts in ganz unterschiedlichen genetischen Varianten vor. Hier brauche es, so schreiben die Autoren in ihrer Veröffentlichung, neue Methoden, um einzelne Viren-Quasispezies definieren zu können.

Weiterer Forschungsbedarf bestehe hinsichtlich der in den Viren vorkommenden Genom-Sekundärstrukturen sowie der Interaktionen zwischen Virus- und Wirtsgenom bei der Infektion und der Immunabwehr. Und nicht zuletzt erhoffe man sich durch neue Forschungen tiefere Einblicke in den Stammbaum und die verwandtschaftlichen Verhältnisse der heute bekannten Viren.

Original-Publikation:
Marz M. et al. Challenges in RNA virus bioinformatics, Bioinformatics 2014, vol. 30 (13), pp 1793-99, DOI: 10.1093/bioinformatics/btu105

Kontakt:
Jun.-Prof. Dr. Manja Marz
Institut für Informatik der Friedrich-Schiller-Universität Jena
Leutragraben 1, 07743 Jena
Tel.: 03641 / 946480
E-Mail: manja[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops