Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Klein, aber oho: eine neue Schlüsselfigur im marinen Stickstoffkreislauf

13.09.2016

Eine kleine Symbiose, die molekularen Stickstoff fixiert, hat großen Anteil an der Gesamtstickstofffixierung im tropischen Nordatlantik. Das zeigt nun erstmals eine neue Studie in Nature Microbiology. Stickstofffixierung ist die größte Quelle von Stickstoff im offenen Ozean. daher spielt diese Symbiose eine Hauptrolle im marinen Stickstoffkreislauf.

Stickstoff ist lebenswichtig für alle Lebensformen: Er ist Teil von Proteinen, Nukleinsäuren und anderen zellulären Strukturen. In vielen Regionen des Ozeans ist Stickstoff aber nur begrenzt verfügbar, beispielsweise im tropischen Nordatlantik. In dieser Region wird Stickstoff vorwiegend über Stickstofffixierung eingetragen, in etwas geringerer Menge auch durch atmosphärischen Transport.


Die kleine Symbiose von UCYN-A und einer einzelligen Alge sieht unscheinbar aus, spielt aber eine Schlüsselrolle im Stickstoffkreislauf des Meeres (grün= Bakterienzelle, orange/blau = Algenzelle)..

Clara Martínez-Pérez/Max-Planck-Institut für Marine Mikrobiologie


Clara Martínez-Pérez an Bord des Forschungsschiffes beim Beproben einer Inkubationsflasche aus dem Versuchsaufbau.

Tim Ferdelman

Stickstofffixierung ist die Umsetzung von inertem (wenig reaktionsfreudigem) Stickstoffgas aus der Atmosphäre zu Stickstoffverbindungen, die auch andere Mikroorganismen nutzen können - zum Beispiel Algen, die Kohlendioxid nutzen.

Die Organismen, die Stickstoff fixieren, werden Stickstofffixierer oder Diazotrophe genannt. Sie düngen sozusagen die nährstofflimitierten Regionen des Ozeans. Deswegen ist es wichtig, die Wirkung und die Hauptakteure der Stickstofffixierung zu kennen. Nur so ist es möglich, zukünftige globale Veränderungen und deren möglichen Einfluss auf die Produktivität des Ozeans zu verstehen.

Clara Martínez-Pérez und ihre Mitautoren vom Max-Planck-Institut für Marine Mikrobiologie in Bremen (MPI Bremen), der Universität Kiel und dem GEOMAR in Kiel haben nun bestimmt, welchen Beitrag einer der häufigsten marinen Diazotrophen namens UCYN-A zur Gesamtstickstofffixierung im tropischen Nordatlantik leistet.

Obwohl dieser kleine Stickstofffixierer, der in Symbiose mit einer einzelligen Alge lebt, im Vergleich zu anderen Diazotrophen sehr zahlreich ist, wurden seine Aktivität und sein Beitrag bislang noch nicht untersucht. Nun zeigt sich: Die bisherigen Annahmen über die Hauptakteure der Stickstofffixierung müssen wahrscheinlich überarbeitet werden.

Ein neuer Hauptakteur im Stickstoffkreislauf

Der tropische Nordatlantik beherbergt etwa ein Viertel der globalen Stickstofffixierung. Bisher wurde angenommen, dass dies vorwiegend auf der Aktivität des diazotrophen Trichodesmium beruht. Trichodesmium ist ein fadenförmiges Cyanobakterium, das in so großer Zahl blühen kann, dass man es sogar mit dem bloßen Auge und mit Satelliten sehen kann. “Allerdings gibt es viele andere Diazotrophe im Ozean, deren Beitrag bisher nicht bestimmt wurde”, erklärt Martínez-Pérez.

Um den Beitrag von UCYN-A zu bestimmen, kombinierten die Wissenschaftler verschiedene Methoden. Eine davon ist das sogenannte NanoSIMS, mit dem man einzelne Zellen darstellen und deren Aktivität messen kann. “Damit können wir die ökologische Rolle von UCYN-A im marinen Stickstoffkreislauf bemessen. Diese Information ist notwendig für globale Modelle der Nährstoffkreisläufe”, sagt Mitautorin Wiebke Mohr vom MPI Bremen.

Die Ergebnisse waren überraschend: Martínez-Pérez und ihre Kollegen zeigen, dass UCYN-A genauso wichtig für die Stickstofffixierung im tropischen Nordatlantik ist wie Trichodesmium. „Obwohl Trichodesmium sehr zahlreich war, war es nicht sehr aktiv und hat nicht sehr viel Stickstoffgas fixiert”, sagt Martínez-Pérez. Im Gegensatz dazu war das viel kleinere UCYN-A sehr aktiv. Für sein symbiotisches Zusammenleben mit einer kleinen Alge muss UCYN-A mehr Stickstoffgas fixieren, als es für sich selbst benötigt, da es auch den Stickstoff für die Alge fixiert. So kommt es, dass UCYN-A im tropischen Nordatlantik genauso viel Stickstoffgas fixierte wie Trichodesmium.

Marine Kosmopoliten

Die Wissenschaftler haben daraufhin die globale Verteilung von UCYN-A untersucht. Im Gegensatz zu Trichodesmium, das nur bei über 20 °Celsius lebt, kommt der kleine Organismus überall vom Arktischen bis zum Antarktischen Polarkreis vor. “Deshalb hat UCYN-A das Potenzial, nicht nur in tropischen Regionen sondern auf der ganzen Welt ein wichtiger Stickstofffixierer zu sein”, sagt Martínez-Pérez. Interessanterweise ist trotz der Aktivität und ökologischen Relevanz dieser Symbiose ihre Anzahl sehr gering ist im Vergleich zu anderen Mikroorganismen im Ozean.

Diese geringe Anzahl von UCYN-A deutet darauf hin, dass sie schnell von Zooplanktern gefressen oder anderweitig aus dem Oberflächenwasser entfernt werden. Dies würde zu einem sehr effizientem Transfer des fixierten Stickstoffs in das marine Nahrungsnetz führen, und legt nahe, dass der Beitrag von UCYN-A zur Stickstofffixierung noch höher ist, als hier bestimmt wurde. “Als nächstes würden wir gerne das Vorkommen und die Aktivität von UCYN-A in anderen Regionen des Ozeans untersuchen. Dies würde uns erlauben, ein tieferes Verständnis dessen globaler Rolle zu erlangen”, schlussfolgert Martínez-Pérez.

Originalveröffentlichung

The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Clara Martínez-Pérez, Wiebke Mohr, Carolin R. Löscher, Julien Dekaezemacker, Sten Littmann, Pelin Yilmaz, Nadine Lehnen, Bernhard M. Fuchs, Gaute Lavik, Ruth A.
Schmitz, Julie LaRoche, Marcel M. M. Kuypers. Nature Microbiology
DOI: 10.1038/nmicrobiol.2016.163

Kontakt

Dr. Wiebke Mohr,
Telefon: 0421 2028 - 630
E-Mail: wmohr@mpi-bremen.de

Clara Martínez-Pérez
Telefon: 0421 2028 - 653
E-Mail: cmartine@mpi-bremen.de

Oder die Pressestelle

Dr. Fanni Aspetsberger
Telefon: 0421 2028 947
E-Mail: faspetsb@mpi-bremen.de

Weitere Informationen:

http://www.mpi-bremen.de

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie