Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kaliumkanal, den Viren ihre Wirte bauen lassen, kommt auch in Gehirnnervenzellen vor

25.08.2008
Was Viren im Mittelmeer machen
Viren zeigen der Wissenschaft einen neuen Weg durch ihre Wirtszelle

Wer in diesem Sommer zum Baden ans Mittelmeer fährt, wird kaum ahnen, dass dort jeder Tropfen Meerwasser eine erhebliche Menge DNA enthält, also an Erbsubstanz, die durchaus auch funktionsfähige Gene umfasst.

Diese DNA hat nichts mit einer Verschmutzung des Wassers zu tun; neuere Untersuchungen weisen darauf hin, dass die DNA überwiegend in Form verschiedener Pflanzenviren vorliegt. Ein einziger scheinbar sauberer Wassertropfen kann Tausende Viren enthalten. Für die Badeurlauber sind sie gänzlich harmlos, können sich aber in den Algen mitunter geradezu seuchenartig vermehren.

Zu diesen Viren zählt etwa das Virus EsV-1, das vor einiger Zeit in der Nähe von Neapel in der kleinen Braunalge Ectocarpus siliculosus identifiziert wurde. In einer internationalen Kooperation wird dieses Virus derzeit unter Beteiligung der Arbeitsgruppe von Prof. Dr. Joachim Rassow (Institut für Physiologische Chemie der Ruhr-Universität) näher untersucht. Neue Ergebnisse sind in der aktuellen Ausgabe der Proceedings of the National Academy of Science, USA (PNAS) vorgestellt.

Viren veranlassen den Bau eines Kanals

Viren enthalten in der Regel nur wenig Erbmaterial. Das Genom des AIDS-Virus, HIV, enthält z.B. lediglich neun Gene. Wesentlich größer ist das Genom des EsV-1: Dr. Nicolas Delaroque vom Max-Planck-Institut für chemische Ökologie in Jena ermittelte insgesamt 231 unterschiedliche EsV-1 Gene. "Spannend ist nun die Frage, warum das EsV-1 so viele Gene enthält, und was für Proteine von diesen Genen kodiert werden", erklärt Prof. Dr. Jochaim Rassow. Interessanterweise kodiert eines der EsV-1-Gene einen kleinen Kaliumkanal, also ein Proteinmolekül, das in einer biologischen Membran eine Pore bildet, durch die hindurch Kaliumionen diffundieren können. Die Pore bildet sich, indem sich jeweils vier gleichartige Proteinmoleküle kreisförmig in der Membran anordnen. Seiner räumlichen Struktur nach sind die Kanäle damit im Prinzip genauso aufgebaut wie die Kaliumkanäle im Nervensystem der Tiere und des Menschen. Ein Virus aus einer Alge kodiert einen Kaliumkanal, der aussieht wie ein Kaliumkanal aus dem Gehirn!

Eigentümlicher Zielfindungsmechanismus

Dieser Befund wirft eine Reihe von Fragen auf, denen inzwischen in einer internationalen Kooperation nachgegangen wird. Beteiligt sind neben den Bochumer Forschern u.a. die Arbeitsgruppen von Prof. Gerhard Thiel (Technische Universität Darmstadt), Prof. Anna Moroni (Università degli Studi di Milano), und Prof. James L. Van Etten (University of Nebraska). Bekanntlich bahnen sich die Gedanken im Gehirn über elektrische Signale ihren Weg, und zwar unter Vermittlung der Ionenkanäle der Nervenzellen. Seltsamerweise wird ein ähnlich gebauter Kanal nun auch von den EsV-1 Viren in der Braunalge angelegt.

Natürlich haben die Algen keine Nervenzellen. Wo bleiben dann die Kaliumkanäle? In der Arbeitsgruppe von Prof. Gerhard Thiel wurde die überraschende Entdeckung gemacht, dass die Kaliumkanäle letztlich in bestimmte Zellorganellen der Alge, die Mitochondrien eingebaut werden. Und woher wissen die Kaliumkanäle, wie sie zu den Mitochondrien gelangen können? "Die Viren haben dazu einen besonderen Mechanismus entwickelt, nämlich ein eigentümliches Zielfindungssignal, das in der Forschung bislang in dieser Form noch unbekannt war", erklärt Prof. Rassow. Seine Arbeitsgruppe beschäftigt sich schon seit längerer Zeit mit den Wegen, auf denen Proteine zu Mitochondrien gelangen. "Die Viren haben uns gleichsam einen geheimen Gang verraten, der zu den Mitochondrien führt", erläutert er die Befunde.

Wozu ein Kaliumkanal in den Mitochondrien?

Es bleibt die Frage, was Viren dazu bewegt, die Mitochondrien ihrer Wirtszellen mit derartigen Kanälen auszustatten. Gibt es mitochondriale Kaliumkanäle auch in Zellen, die nicht mit Viren in Berührung gekommen sind? "Interessanterweise wurden Kaliumkanäle in früheren Studien in den Mitochondrien des gesunden Herzmuskels des Menschen nachgewiesen. Hier scheinen sie die Zellen z.B. vor den Folgen eines Herzinfarktes zu schützen", erklärt Prof. Rassow.

Mitochondriale Kaliumkanäle scheinen Zellen zu stabilisieren. Doch warum sollte sich ein Algenvirus vor einem Herzinfarkt schützen? "Tatsächlich sind Viren immer in der Gefahr, dass sich ihre Wirtszellen schnell selber abtöten, um die benachbarten Zellen vor einer Infektion zu bewahren", erläutert Prof. Rassow. "Viren haben also ein Interesse daran, ihre Wirtszellen zu stabilisieren. Vielleicht tun sie das in der Braunalge Ectocarpus siliculosus durch den Einbau von Kaliumkanälen." Leider ist über die endogenen Kaliumkanäle der Mitochondrien des Herzmuskels bislang kaum etwas bekannt. Vielleicht kann die Kardiologie demnächst etwas von den Pflanzenviren aus dem Mittelmeer lernen.

Titelaufnahme

Balss, J. et al. (2008) Transmembrane domain length of viral K+ channels is a signal for mitochondria targeting. Proc. Natl. Acad. Sci. USA 105, 12313-12318.

Weitere Informationen

Prof. Dr. Joachim Rassow, Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, Raum MA3/40, 44780 Bochum, Tel. 0234/32-29079; joachim.rassow@rub.de

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten