Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

IMP-Forscher beleuchten die „dunkle Materie“ der Erbsubstanz

18.01.2013
Welche Gene in einer Zelle aktiv sind, wird von tausenden Regulations-Abschnitten auf der DNA gesteuert. Wissenschaftler am Forschungsinstitut für Molekulare Pathologie (IMP) in Wien entwickelten eine Methode, die diese Abschnitte effizient und vollständig aufspürt und deren Aktivität misst. Die Zeitschrift Science stellt die neue Technologie vor.

Der genetische Code ist ein Alphabet aus vier Buchstaben, deren Reihenfolge die Information für die Entwicklung und Funktion eines gesamten Organismus enthält. Die Anleitung für die Proteine als Bausteine des Lebens ist in den Genen kodiert.


Zellen im Eierstock einer Taufliege, Fluoreszenz-mikroskopische Aufnahme. Die DNA ist blau gefärbt, in grün ist die Enhancer-Aktivität dargestellt. Foto: IMP

Doch nur ein Bruchteil der DNA einer Zelle besteht aus Genen, beim Menschen sind es etwa zwei Prozent. Der Rest ist nicht-kodierende DNA, die früher abwertend als Schrott bezeichnet wurde. Zutreffender ist da schon der Begriff „dark matter“, dunkle Materie, und so langsam kommt Licht in diesen Bereich unserer Erbsubstanz.

Die nicht-kodierenden Abschnitte auf der DNA sind keineswegs nur Müll. Unter anderem enthalten sie Bereiche, die die Aktivität von Genen regulieren. Da jede Zelle des Körpers eine identische Kopie der Erbinformation enthält, sorgen sogenannte „Enhancer“ (Verstärker) dafür, dass Gene nur zum jeweils passenden Zeitpunkt und im entsprechenden Gewebe aktiv sind: das Hämoglobin-Gen etwa in den Vorläuferzellen der roten Blutkörperchen, Gene für Verdauungsenzyme im Magen. Ist diese exakt abgestimmte zeitliche und örtliche Regulation gestört, so können falsche Gene aktiviert werden und den Zellen unerwünschte Eigenschaften verleihen, bis hin zur Entartung in Krebszellen.

Trotz der enormen Bedeutung der regulierenden DNA-Abschnitte war es bisher nur sehr eingeschränkt möglich, diese im gesamten Genom zu studieren. Es standen lediglich indirekte Methoden zur Identifizierung solcher Abschnitte zur Verfügung, die überdies anfällig für Fehler waren.

Wissenschaftler um Alexander Stark am Forschungsinstitut für Molekulare Pathologie in Wien konnten diese Lücke nun schließen. Unterstützt vom Europäischen Forschungsrat ERC entwickelten sie eine neue Technologie namens „STARR-seq“ (self-transcribing active regulatory region sequencing), die sie in der Zeitschrift Science vorstellen.*) Die Methode erlaubt es, Enhancer-Sequenzen in der DNA nicht nur vollständig und rasch aufzuspüren, sondern gleichzeitig auch ihre jeweilige Aktivität quantitativ zu bestimmen, das heißt starke von schwachen Enhancern zu unterscheiden.

Der Doktorand Cosmas Arnold hat die neue Technologie maßgeblich entwickelt und mit Hilfe des Bioinformatikers Daniel Gerlach auf Zell-Linien von Taufliegen angewendet. Dabei gewannen die Forscher bereits einige überraschende Erkenntnisse: Starke Enhancer wurden sowohl für sogenannte Haushaltsgene gefunden, die in jeder Zellen aktiv sind, wie auch für regulierte Gene, die für den jeweiligen Zelltyp spezifisch sind. Und erstmals konnte mit der Methode gezeigt werden, dass so gut wie alle Gene von mehreren Enhancern reguliert werden – eine Redundanz, die die Forscher als eine Art Sicherheitsnetz der Zelle interpretieren, das die Steuerung robuster macht.

Die neue Methode kombiniert die enorme Leistungsfähigkeit moderner Sequenziergeräte mit dem spezialisierten Know-how der Bioinformatiker am IMP. Für Alexander Stark ist sie ein äußerst wertvolles Werkzeug, von dem er sich viel verspricht: „Wir nutzen STARR-seq wie eine Art magisches Mikroskop, das die regulatorischen DNA-Abschnitte des Genoms sichtbar und zugänglich macht. Nun können wir erstmals flächendeckend untersuchen, wie Gene reguliert werden und wie diese Regulation im Genom verankert ist“.

Neben der Genregulation im Lauf der normalen Entwicklung interessiert die IMP-Forscher auch, auf welche Weise fehlgeleitete Steuerung zu Erkrankungen bis hin zu Krebs führt. Gerade Mutationen in nicht-kodierenden DNA-Abschnitten haben sich bisher einer Analyse weitgehend entzogen, können aber weitreichende Folgen haben.

*) Die Arbeit „STARR-seq Reports Genome-Wide Quantitative Enhancer Activity Maps Revealing Complex cis-Regulation of Transcription“ von Cosmas Arnold et al. erscheint am 17.1.2013 online in Science Express.

Eine Illustration zum unentgeltlichen Abdruck in Zusammenhang mit dieser Aussendung steht auf der IMP-Website zum Download zur Verfügung: http://www.imp.ac.at/pressefoto-enhancer

Über Alexander Stark
Alexander Stark wurde 1974 in Bietigheim-Bissingen geboren. Er studierte Biochemie in Tübingen und dissertierte am EMBL in Heidelberg. An das Doktorat in Bioinformatik schloss er einen dreijährigen Forschungs­aufenthalt am Broad Institute von MIT und Harvard an. Seit 2008 ist Stark Gruppen­leiter am IMP in Wien. Im Jahr 2009 erkannte ihm der Europäische Forschungsrat ERC einen „Starting Grant“ über 1,8 Millionen Euro zu.
Über das IMP
Das Forschungsinstitut für Molekulare Pathologie betreibt in Wien biomedizinische Grundlagenforschung und wird dabei maßgeblich von Boehringer Ingelheim unter­stützt. Mehr als 200 ForscherInnen aus über 30 Nationen widmen sich der Aufklärung grundlegender molekularer und zellulärer Vorgänge, um komplexe biologische Phäno­mene im Detail zu verstehen und Krankheitsmechanismen zu entschlüsseln.
Kontakt
Dr. Heidemarie Hurtl
IMP Communications
Tel.: (+43 1) 79730 3625
Mobil: 0664/8247910
hurtl@imp.ac.at

Dr. Heidemarie Hurtl | idw
Weitere Informationen:
http://www.imp.ac.at
http://www.imp.ac.at/research/research-groups/stark-group/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten