Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Immunzellen weisen Lymphgefäßen den Weg

17.03.2010
Weiße Blutkörperchen geben Startsignal zur Bildung von Lymphbahnen

Blut- und Lymphgefäße sind die Verkehrsnetze unseres Körpers. Alles, was unsere Zellen benötigen, gelangt durch arterielle Gefäße an seinen Bestimmungsort. Venen und Lymphbahnen wiederum helfen beim Abtransport, sind jedoch streng getrennte Gefäßsysteme. Forscher vom Max-Planck-Institut für molekulare Biomedizin in Münster haben nun entdeckt, dass eine spezialisierte Gruppe von Blutzellen im Embryo Lymphgefäße sprießen lassen kann. Diese Blutzellen bilden Botenstoffe, die das Auswachsen von Gefäßen veranlassen. (Developmental Cell, 16. März 2010)


Haut eines gesunden 15 Tage alten Maus-Fötus mit Blut- (rot) und Lymphgefäßen (blau) unter dem Mikroskop. Das Enzym Syk kommt nur in speziellen weißen Blutkörperchen vor (grün). Kann Syk aufgrund eines Gendefekts nicht gebildet werden, wandern diese Zellen vermehrt in die Haut ein und führen dort zu übermäßigem Wachstum von Lymphgefäßen. Bild: Friedemann Kiefer

Lymphgefäße durchziehen den gesamten Körper. Sie leiten überschüssige Flüssigkeit und Abfallstoffe aus den Geweben, außerdem sind sie wichtige Transportbahnen für Immunzellen. Lymph- und Blutgefäße sind abgesehen von zwei Verbindungsstellen im Bereich der Schlüsselbeine getrennte Systeme. So verlaufen sie beispielsweise in der Haut in unterschiedlichen Schichten. Die Transportsysteme des Körpers können offenbar nur getrennt richtig funktionieren, denn Mutationen im Erbgut, die diese Trennung verhindern, enden für den Organismus fast immer bereits in der Embryonalphase tödlich.

Die Max-Planck-Wissenschaftler aus Münster haben nun entdeckt, dass eine Gruppe weißer Blutkörperchen, so genannte myeloide Zellen, das Signal für die Bildung von Lymphgefäßen geben können. Die Forscher konnten beobachten, dass immer dort Gefäße besonders stark sprossen, wo sich zuvor die weißen Blutkörperchen angesammelt hatten. Die Zellen bildeten vermehrt Signalstoffe und lösten so die Bildung von Lymphbahnen aus. Bislang war man davon ausgegangen, dass eine fehlerhafte Regulation der Endothelzellen zum unkontrollierten Wachstum der Lymphgefäße führt.

Signalmolekül Syk verhindert übermäßiges Wachstum von Lymphgefäßen

Gemeinsam ist den myeloiden Zellen das Enzym Syk. Dieses intrazelluläre Signalmolekül spielt den Forschern zufolge eine wichtige Rolle bei der Bildung von Lymphgefäßen. Dies konnten die Forscher bei Mäusen beobachten, die aufgrund eines Gendefekts kein Syk bilden können. Bei diesen so genannten Knockout-Mäusen vermischen sich Blut- und Lymphgefäße - es entstehen Verbindungen zwischen beiden Systemen und führen bereits im Mutterleib zum Tod der Tiere. Fehlt Syk, so häufen sich viele myeloide Zellen an, die mehr Botenstoffe bilden. "Dadurch entstehen mehr Lymphgefäße, die nun auch in Bereiche der Haut einwachsen, in denen sonst nur Blutgefäße vorkommen. Vermutlich fördert die räumliche Nähe, dass sich zwischen den beiden Systemen Verbindungen bilden und die Trennung zwischen Blut- und Lymphsystem aufgehoben wird", erklärt Friedemann Kiefer.

Syk reguliert also die Ansammlung myeloider Zellen und die Ausschüttung von Botenstoffen so, dass Lymph- und Blutgefäße nicht in Kontakt kommen. Dadurch werden die beiden Systeme getrennt gehalten. Als nächstes wollen die Forscher herausfinden, wie die weißen Blutkörperchen die Stellen auswählen, an denen sie das Sprossen neuer Lymphgefäße auslösen.

Diese Erkenntnisse könnten eines Tages dazu beitragen, dass das Wachstum von Lymphgefäßen gezielt angeregt werden kann. Davon könnten beispielsweise Krebspatienten profitieren, denen von Tumorzellen befallene Lymphknoten entfernt werden müssen. Als Folge davon leiden diese Patienten häufig unter Flüssigkeitsansammlungen im Gewebe, so genannten Lymphödemen. Umgekehrt könnte die Ausbreitung von Krebszellen über das Lymphsystem verhindert werden, indem das Einwachsen von Lymphgefäßen in Tumore unterdrückt wird.

Originalveröffentlichung:

Ruben Böhmer, Brit Neuhaus, Sebastian Bühren, Dayong Zhang, Martin Stehling, Barbara Böck, and Friedemann Kiefer
Regulation of Developmental Lymphangiogenesis by Syk+ Leukocytes
Developmental Cell, 16. März 2010 (doi:10.1016/j.devcel.2010.01.009)
Weitere Informationen erhalten Sie von:
Dr. Friedemann Kiefer
Max-Planck-Institut für molekulare Biomedizin, Münster
Tel.: +49 (0)251 / 70365-230
E-Mail: fkiefer@gwdg.de
Dr. Jeanine Müller-Keuker, PR-Referentin
Max-Planck-Institut für molekulare Biomedizin, Münster
Tel.: +49 (0)251 / 70365-325
E-Mail: j.mueller-keuker@mpi-muenster.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen