Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Immunzellen Krebszellen zerstören - MDC-Forscher entschlüsseln Mechanismus

09.01.2012
Wie effektiv ist eine Krebstherapie mit maßgeschneiderten Zellen des Immunssystems im Vergleich zu einer medikamentösen Therapie?

Dieser Frage sind Forscher vom Max-Delbrück-Centrum (MDC) Berlin-Buch mit Forschern vom Beckman Research Institute des City of Hope Krebszentrums in Duarte, Kalifornien, USA, nachgegangen. Sie konnten zeigen, dass beide Methoden in Mäusen große Tumoren abtöten, doch zerstören die Immunzellen (T-Zellen) auch die Blutgefäße und so die Nahrungszufuhr der Tumoren. Dabei werden auch die Krebszellen abgetötet, die einer medikamentösen Therapie entkommen und für ein Wiederauftreten des Tumors verantwortlich sind. (Cancer Cell, doi10.1016/j.ccr.2011.10.019)*.

Dr. Kathleen Anders und Prof. Thomas Blankenstein (beide MDC) hoffen, dass ihre Erkenntnisse in Zukunft zur Verbesserung der Therapie von Krebspatienten im Rahmen klinischer Studien genutzt werden können. Die Forscher transplantierten Mäusen Tumorzellen, die das für das Tumorwachstum kritische Krebsgen SV40 large T ausprägen. Damit sind sie in der Lage, das Krebsgen durch das Antibiotikum Doxycyclin, ähnlich wie mit modernen Medikamenten, die jüngst in der Klinik Verwendung finden, abzuschalten. Da das Krebsgen außerdem als Antigen auf der Oberfläche der Tumorzellen präsent ist, können die Forscher diese Tumoren auch mit Krebsgen-spezifischen T-Zellen attackieren. Damit ist es erstmals möglich, die Wirksamkeit zweier ganz unterschiedlicher Therapieansätze direkt miteinander zu vergleichen.

Das Besondere an dieser Studie ist zudem, dass die Wissenschaftler die Wirkung beider Therapien an Tumoren getestet haben, die so groß waren, wie sie auch in Kliniken bei Patienten vorkommen. Das bedeutet, die Tumoren sind größer als ein Zentimeter und haben etwa eine Milliarde Krebszellen. Erst dann, so die Forscher, ist der Aufbau des Tumorgewebes (Tumorstroma), zu denen zum Beispiel auch die Blutgefäße des Tumors zählen, abgeschlossen. Der Tumor gilt als „etabliert“. Ziel einer Tumortherapie ist, alle Krebszellen abzutöten, um zu verhindern, dass eine Krebserkrankung erneut auftritt.

Die Forscher konnten zeigen, dass sich der Tumor bei den Mäusen durch die medikamentöse Abschaltung des Krebsgens zwar zurückbildet, seine Blutversorgung aber intakt bleibt. Außerdem werden einige Krebszellen aufgrund von genetischen Veränderungen (Mutationen) gegen das Medikament resistent und bilden schnell, trotz kontinuierlicher Medikamentengabe, neue Tumoren.

Die T-Zell-Therapie, so stellten die Forscher fest, ist bei den Mäusen langfristig wirksamer, weil sie die Blutzufuhr des Tumors zerstört und dadurch offenbar auch die Krebszellen abfängt, die ihre Merkmale durch Mutationen verändert haben. Für diesen Therapieansatz rüsten die Forscher bestimmte Zellen des Immunsystems, die zytotoxischen T-Zellen (für die Zelle giftige Immunzellen) im Reagenzglas so auf, dass sie bestimmte Merkmale auf den Oberflächen der Krebszellen erkennen und die Tumorzellen gezielt zerstören. Diese scharf gemachten Immunzellen geben sie den Mäusen wieder zurück. Die Forscher weisen darauf hin, dass inzwischen auch Techniken zur Herstellung hochspezieller T-Zellen gegen Tumoren des Menschen entwickelt werden können, wie frühere Arbeiten der Forschungsgruppe von Prof. Blankenstein gezeigt haben. Jetzt komme es darauf an, genau zu bestimmen, wie diese Immunzellen im Rahmen klinischer Studien eingesetzt werden können.

*Oncogene-targeting T cells reject large tumors, while oncogene inactivation selects escape variants in mouse models of cancer

Kathleen Anders1, Christian Buschow2, Andreas Herrmann3, Ana Milojkovic4, Christoph Loddenkemper5, Thomas Kammertoens2, Peter Daniel4, Hua Yu3, Jehad Charo1, Thomas Blankenstein1,2,*

1Max-Delbrück-Center for Molecular Medicine, 13092 Berlin, Germany
2Institute of Immunology, Charité Campus Benjamin Franklin, 12200 Berlin, Germany
3Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA 91010 USA
4Department of Hematology, Oncology and Tumor Immunology, Charité, Campus Berlin Buch, 13092, Berlin, Germany

5Institute of Pathology, Charité Campus Benjamin Franklin, 12200, Berlin, Germany

Kontakt:
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Weitere Informationen:
http://www.mdc-berlin.de/
http://www.mdc-berlin.de/de/news/archive/2010/20100806-mehr_schlagkraft_gegen_krebs__mdc-_und_cha/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie