Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Immuntherapie: Doping für die Killerzellen

20.05.2011
Zellen des Immunsystems können Krebsgewebe erkennen und effektiv eliminieren.

Jedoch entziehen sich Tumorzellen der Identifizierung auf vielfältige Weise – insbesondere dadurch, dass sie ihre Merkmale auf der Oberfläche nicht mehr ausprägen. Die Arbeitsgruppe um Professor Hinrich Abken an der Uniklinik Köln arbeitet an einer Therapie, die Immunzellen befähigt, Tumorzellen trotzdem im Gewebe aufzuspüren und zu vernichten.

Die Kölner Forscher wollen die Wirkung der sogenannten adoptiven Immuntherapie verbessern. Diese Behandlungsmethode unterstützt das körpereigene Immunsystem im Kampf gegen den Krebs. Zur Behandlung entnehmen Mediziner Killerzellen (zytotoxische T-Zellen) aus dem Krebsgewebe, vermehren diese im Labor und führen sie dem Patienten anschließend in großer Zahl wieder zu. Leider verfügen die isolierten Killerzellen nur selten über eine ausreichende Aktivität gegenüber dem Tumor. Professor Abken und sein Team wollen die Killerzellen deshalb gezielt auf den Tumor abrichten.

Zum Einen statten sie die Immunzellen künstlich mit Tumor-Erkennungsstrukturen aus. Diese sollen die Aggressivität der Zellen gegenüber entartetem Gewebe erhöhen. Die Killerzellen werden befähigt, das Krebsgewebe spezifisch zu identifizieren und anschließend effizient zu zerstören. „In experimentellen Modellen hat dieses Vorgehen viel versprechende Ergebnisse erbracht“, erläutert Prof. Abken.

In der Praxis gibt es jedoch noch eine Hürde zu überwinden: Das Modell setzt voraus, dass alle Tumorzellen ein spezifisches Erkennungsmerkmal auf ihrer Oberfläche tragen. Tatsächlich aber tarnt sich der Tumor in der Regel: Er prägt kein Erkennungsmerkmal aus. Deshalb greift die Arbeitsgruppe zu einem weiteren künstlichen Instrument: Sie will die Killerzellen zusätzlich mit einem Botenstoff (IL 12) ausrüsten, den die Zellen abgeben, sobald sie in das Tumorgewebe eindringen und erste Krebszellen erkannt haben.

Der Botenstoff soll weitere Zellen der Immunabwehr anlocken und aktivieren – insbesondere sogenannte Natürliche Killerzellen (NK). Durch den Botenstoff werden diese dann in der Lage versetzt, das Tumorgewebe unabhängig von einem bestimmten Merkmal zu zerstören. „Durch diese gezielte Aktivierung von Natürlichen Killerzellen versprechen wir uns eine erhebliche Effektivitätssteigerung in der Immuntherapie von Tumoren“, unterstreicht Abken die Motivation zu den Experimenten.

Die Wilhelm Sander-Stiftung fördert dieses Forschungsprojekt mit über 260.000 Euro. Stiftungszweck der Stiftung ist die medizinische Forschung, insbesondere Projekte im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden dabei insgesamt über 190 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Kontakt:
Univ.-Prof. Dr. Hinrich Abken
Uniklinik Köln, Klinik 1 für Innere Medizin, Abt. Tumorgenetik und Immunologie
E-Mail: hinrich.abken@uk-koeln.de
http://innere1.uk-koeln.de/profil/hinrich_abken

Sylvia Kloberdanz | idw
Weitere Informationen:
http://www.wilhelm-sander-stiftung.de
http://innere1.uk-koeln.de/profil/hinrich_abken

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise