Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Identifizierung nach 25 Jahren: Unbekannter großer Ionenkanal im Herzen ist das Pannexin-1

14.01.2011
RUB-Mediziner berichten im Journal of Biological Chemistry

Schon vor 25 Jahren entdeckte eine RUB-Arbeitsgruppe einen besonders großen Ionenkanal in Herzmuskelzellen, dessen Identität seither ein Rätsel war. Zwei Arbeitsgruppen der Medizinischen Fakultät der RUB konnten jetzt endlich das Geheimnis lüften: Es handelt sich um den Pannexin-1-Kanal, der erst vor wenigen Jahren erstmals beschrieben wurde. Er kommt unter anderem im Gehirn vor und wird dort zum Beispiel für epileptische Ereignisse verantwortlich gemacht. Er könnte auf ähnliche Weise auch an der Entstehung von Herzrhythmusstörungen beteiligt sein, mutmaßen die Arbeitsgruppen um Prof. Dr. Lutz Pott und Prof. Dr. Rolf Dermietzel. Sie berichten in der aktuellen Ausgabe des Journal of Biological Chemistry.


Vordergrund: Typisches Signal von Pannexin-1 Kanälen (dunkelorange), Hintergrund: isolierte Herzmuskelzelle mit grün leuchtenden Pannexin-1 Kanälen blauen Zellkernen.

Großer Kanal, schnelle Signalweiterleitung

Das erst vor wenigen Jahren entdeckte Pannexin-1-Kanalprotein ist Mitglied einer Familie von Proteinen, die am Aufbau von elektrischen Schaltstellen zwischen Nervenzellen (Synapsen) beteiligt sind. Durch das kontrollierte Öffnen und Schließen ermöglicht der Kanal den Ausstrom geladener Teilchen und somit zum Beispiel im Gehirn oder der Netzhaut des Auges die besonders schnelle Weiterleitung elektrischer Signale. Eines der charakteristischen Merkmale dieser Kanäle ist ihre außergewöhnliche Größe. Werden sie unkontrolliert geöffnet, kann das gefährliche Folgen haben. Sie lassen vergleichsweise große Mengen von Stoffen aus Zellen ausströmen, die physiologisch bedeutsam sind und Regelkreise durcheinander bringen können. Man vermutet daher, dass Pannexin-1-Kanäle verschiedene krankhafte Prozesse (mit-)verursachen, etwa bestimmte Formen der Epilepsie.

Zusammenarbeit bringt den Erfolg

Zwei Forschungsgruppen der Medizinischen Fakultät der RUB konnten jetzt in interdisziplinärer Zusammenarbeit nachweisen, dass es sich bei dem seit 25 Jahren rätselhaften Ionenkanal in Herzmuskelzellen genau um diesen Pannexin-1-Kanal handelt. Der unbekannte, ungewöhnlich große Kanal wurde von der RUB-Arbeitsgruppe um Prof. Dr. Lutz Pott (Abteilung für Zelluläre Physiologie) im Jahr 1986 zum ersten Mal im Journal Nature beschrieben. Versuche zur Identifizierung der molekularen Identität des Kanals waren aber nicht schlüssig.

Nächste Frage: Wozu benutzen Herzmuskelzellen den Kanal?

Unabhängig von dieser Suche charakterisierte die Arbeitsgruppe „Molekulare Hirnforschung“ am Neuroanatomischen Institut molekular- und zellbiologisch Kanalproteine in elektrischen Synapsen. Die funktionelle Analyse eines dieser Proteine führte zu der Annahme, dass das Pannexin-1-Protein für die Kanalaktivität in Herzmuskelzellen verantwortlich sein könnte. Um diese Frage zu klären, arbeiteten die beiden Gruppen zusammen. „Und tatsächlich konnten wir mit elektrophysiologischen, molekularbiologischen und bildgebenden Methoden nachweisen, dass Herzmuskelzellen über Pannexin-Kanäle verfügen“, freut sich PD Dr. Georg Zoidl. „Das unkontrollierte Öffnen dieser Kanäle hat vermutlich katastrophale Folgen für den Herzrhythmus, der durch elektrische Signale gesteuert wird.“ Es bleibt daher aufzuklären, wozu die Herzmuskelzellen Pannexin-1-Kanäle benutzen. PD Dr. Marie-Cécile Kienitz und PD Dr. Georg Zoidl werden dazu das interdisziplinäre Forschungsvorhaben fortsetzen und die klinisch relevante Fragestellung an genetisch modifizierten Mäusen und Zellkulturmodellen bearbeiten.

Titelaufnahme

Marie-Cécile Kienitz, Kirsten Bender, Rolf Dermietzel, Lutz Pott, Georg Zoidl: Pannexin 1 Constitutes the Large Conductance Cation Channel of Cardiac Myocytes. In: JBC 286, 290-298, doi: 10.1074/jbc.M110.163477

Weitere Informationen

PD Dr. Georg Zoidl, Medizinische Fakultät der RUB,
Tel. 0234/32-25018, E-Mail: georg.zoidl@rub.de
PD Dr. Marie-Cécile Kienitz, Medizinische Fakultät der RUB,
Tel. 0234/32-29206, E-Mail: cecile.kienitz@rub.de
Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie