Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hunde und Affen besitzen Molekül für Magnetfeld-Wahrnehmung im Auge

24.02.2016

Hundeartige Raubtiere sowie einige Affenarten können sich möglicherweise ähnlich wie Vögel am Erdmagnetfeld orientieren.

Cryptochrome sind lichtempfindliche Moleküle, die in Bakterien, Pflanzen und Tieren vorkommen. Bei Tieren sind sie an der Steuerung der Tagesrhythmik des Körpers beteiligt. Außerdem ermöglichen Cryptochrome Vögeln die lichtabhängige Orientierung am Erdmagnetfeld: Cryptochrom 1a findet sich in Lichtsinneszellen des Vogelauges und wird vom Magnetfeld aktiviert.


Hunde und manche Affen besitzen in ihren Augen Moleküle, mit denen sie möglicherweise das Magnetfeld der Erde wahrnehmen können.

Leo Peichl

Forscher vom Frankfurter Max-Planck-Institut für Hirnforschung haben nun Cryptochrom 1 auch in Lichtsinneszellen mehrerer Säugetierarten gefunden. Möglicherweise besitzen diese Tiere also ebenfalls einen an das Sehsystem gekoppelten Magnetsinn.

Die Wahrnehmung des Erdmagnetfeldes hilft vielen Tierarten bei der Orientierung und Navigation. Einen solchen Magnetsinn haben zum Beispiel manche Insekten, Fische, Reptilien, Vögel und Säugetiere. Menschen scheinen dagegen das Magnetfeld der Erde nicht wahrnehmen zu können.

Bei Zugvögeln ist der Magnetsinn besonders gut untersucht: Im Gegensatz zu einem Pfadfinderkompass, der die Himmelsrichtung anzeigt, erkennt der Vogelkompass die Neigung der Magnetfeldlinien zur Erdoberfläche. Erstaunlicherweise ist dieser sogenannte Inklinationskompass der Vögel an das Sehsystem gekoppelt, denn das Magnetfeld aktiviert das lichtempfindliche Molekül Cryptochrom 1a in der Netzhaut des Vogelauges. Cryptochrom 1a liegt dort in den blau- bis UV-empfindlichen Zapfenzellen und reagiert auf das Magnetfeld nur, wenn es gleichzeitig durch Licht angeregt wird.

Christine Nießner und Leo Peichl vom Frankfurter Max-Planck-Institut für Hirnforschung haben zusammen mit Kollegen der Ludwig-Maximilians-Universität München, der Goethe-Universität Frankfurt am Main sowie der Universitäten Duisburg-Essen und Göttingen das Vorkommen von Cryptochrom 1 in der Netzhaut von 90 Säugetierarten untersucht.

Das Cryptochrom 1 der Säugetiere ist das Gegenstück zum Cryptochrom 1a der Vögel. Mit Hilfe von Antikörpern gegen die Licht-aktivierte Form haben sie Cryptochrom 1 nur in einigen Arten aus der Gruppe der Raubtiere und der Affen gefunden. Dort befindet es wie bei den Vögeln in den blau-empfindlichen Zapfen. Bei den Raubtieren besitzen hundeartige Säuger wie Hund, Wolf, Bär, Fuchs und Dachs das Molekül, katzenartige Raubtiere wie Katzen, Löwen und Tiger dagegen nicht. Bei Affen kommt Cryptochrom 1 zum Beispiel im Orang-Utan vor. Bei allen anderen der 16 untersuchten Säugetier-Ordnungen konnten die Forscher kein aktives Cryptochrom 1 in den Zapfenzellen der Netzhaut entdecken.

Das aktive Cryptochrom 1 sitzt in den lichtempfindlichen Außensegmenten der Zapfenzellen. Es ist deshalb unwahrscheinlich, dass es von dort die Tagesrhythmik der Tiere steuert, da diese im entfernt liegenden Zellkern geregelt wird. Auch als zusätzliches Sehpigment zur Farbwahrnehmung dient das Cryptochrom 1 wahrscheinlich nicht. Die Forscher vermuten daher, dass einige Säugetiere das Cryptochrom 1 zur Wahrnehmung des Erdmagnetfeldes benutzen. Evolutionär gesehen entsprechen die Blauzapfen der Säugetiere den blau- bis UV-empfindlichen Zapfen der Vögel. Es ist also durchaus möglich, dass das Cryptochrom 1 der Säuger eine vergleichbare Funktion hat.

Tatsächlich deuten Beobachtungen an Füchsen, Hunden und sogar am Menschen daraufhin, dass diese das Erdmagnetfeld wahrnehmen können. Füchse zum Beispiel fangen Mäuse erfolgreicher, wenn sie ihre Beute in Nordost-Richtung anspringen. „Allerdings waren wir sehr überrascht, aktives Cryptochrom 1 nur in den Zapfenzellen von zwei Säugetiergruppen zu finden, denn auf das Magnetfeld reagieren auch Arten, deren Zapfen kein aktives Cryptochrom 1 besitzen, etwa einige Nagetiere und Fledermäuse“, sagt Christine Nießner.

Eine Erklärung dafür könnte sein, dass Tiere das Magnetfeld auch auf andere Art wahrnehmen können: zum Beispiel mit Hilfe von Magnetit, mikroskopisch kleinen eisenhaltigen Partikeln in Zellen. Ein Magnetit-basierter Magnetsinn funktioniert nach dem Prinzip eines Taschenkompasses und benötigt kein Licht. Die in lichtlosen Tunnelsystemen lebenden Graumulle beispielsweise orientieren sich mit einem solchen Kompass. Auch Vögel besitzen einen zusätzlichen, auf Magnetit beruhenden Orientierungsmechanismus, mit dem sie ihre Position bestimmen.

Bei der Erforschung des Magnetsinnes sind also noch viele grundsätzliche Fragen offen. Künftige Untersuchungen müssen zeigen, ob das Cryptochrom 1 in den Blauzapfen auch bei den Säugetieren zu einem Magnetsinn gehört oder ob es andere Aufgaben in der Netzhaut übernimmt.

Originalpublikation (Open Access):
Christine Nießner, Susanne Denzau, Erich Pascal Malkemper, Julia Christina Gross, Hynek Burda, Michael Winklhofer, Leo Peichl (2016) Cryptochrome 1 in Retinal Cone Photoreceptors Suggests a Novel Functional Role in Mammals. Scientific Reports 6, 21848; doi: 10.1038/srep21848.

Ansprechpartner:
Dr. Christine Nießner
Max-Planck-Institut für Hirnforschung, Frankfurt/M.
Telefon: +49 69 96769-239
E-Mail: c.niessner@bio.uni-frankfurt.de

Prof. Dr. Leo Peichl
Max-Planck-Institut für Hirnforschung, Frankfurt/M.
Telefon: +49 69 96769-348
E-Mail: leo.peichl@brain.mpg.de

Weitere Informationen:

http://www.mpg.de/10319313/magnetfeld-kompass-auge

Dr. Arjan Vink | Max-Planck-Institut für Hirnforschung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie