Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hunde und Affen besitzen Molekül für Magnetfeld-Wahrnehmung im Auge

24.02.2016

Hundeartige Raubtiere sowie einige Affenarten können sich möglicherweise ähnlich wie Vögel am Erdmagnetfeld orientieren.

Cryptochrome sind lichtempfindliche Moleküle, die in Bakterien, Pflanzen und Tieren vorkommen. Bei Tieren sind sie an der Steuerung der Tagesrhythmik des Körpers beteiligt. Außerdem ermöglichen Cryptochrome Vögeln die lichtabhängige Orientierung am Erdmagnetfeld: Cryptochrom 1a findet sich in Lichtsinneszellen des Vogelauges und wird vom Magnetfeld aktiviert.


Hunde und manche Affen besitzen in ihren Augen Moleküle, mit denen sie möglicherweise das Magnetfeld der Erde wahrnehmen können.

Leo Peichl

Forscher vom Frankfurter Max-Planck-Institut für Hirnforschung haben nun Cryptochrom 1 auch in Lichtsinneszellen mehrerer Säugetierarten gefunden. Möglicherweise besitzen diese Tiere also ebenfalls einen an das Sehsystem gekoppelten Magnetsinn.

Die Wahrnehmung des Erdmagnetfeldes hilft vielen Tierarten bei der Orientierung und Navigation. Einen solchen Magnetsinn haben zum Beispiel manche Insekten, Fische, Reptilien, Vögel und Säugetiere. Menschen scheinen dagegen das Magnetfeld der Erde nicht wahrnehmen zu können.

Bei Zugvögeln ist der Magnetsinn besonders gut untersucht: Im Gegensatz zu einem Pfadfinderkompass, der die Himmelsrichtung anzeigt, erkennt der Vogelkompass die Neigung der Magnetfeldlinien zur Erdoberfläche. Erstaunlicherweise ist dieser sogenannte Inklinationskompass der Vögel an das Sehsystem gekoppelt, denn das Magnetfeld aktiviert das lichtempfindliche Molekül Cryptochrom 1a in der Netzhaut des Vogelauges. Cryptochrom 1a liegt dort in den blau- bis UV-empfindlichen Zapfenzellen und reagiert auf das Magnetfeld nur, wenn es gleichzeitig durch Licht angeregt wird.

Christine Nießner und Leo Peichl vom Frankfurter Max-Planck-Institut für Hirnforschung haben zusammen mit Kollegen der Ludwig-Maximilians-Universität München, der Goethe-Universität Frankfurt am Main sowie der Universitäten Duisburg-Essen und Göttingen das Vorkommen von Cryptochrom 1 in der Netzhaut von 90 Säugetierarten untersucht.

Das Cryptochrom 1 der Säugetiere ist das Gegenstück zum Cryptochrom 1a der Vögel. Mit Hilfe von Antikörpern gegen die Licht-aktivierte Form haben sie Cryptochrom 1 nur in einigen Arten aus der Gruppe der Raubtiere und der Affen gefunden. Dort befindet es wie bei den Vögeln in den blau-empfindlichen Zapfen. Bei den Raubtieren besitzen hundeartige Säuger wie Hund, Wolf, Bär, Fuchs und Dachs das Molekül, katzenartige Raubtiere wie Katzen, Löwen und Tiger dagegen nicht. Bei Affen kommt Cryptochrom 1 zum Beispiel im Orang-Utan vor. Bei allen anderen der 16 untersuchten Säugetier-Ordnungen konnten die Forscher kein aktives Cryptochrom 1 in den Zapfenzellen der Netzhaut entdecken.

Das aktive Cryptochrom 1 sitzt in den lichtempfindlichen Außensegmenten der Zapfenzellen. Es ist deshalb unwahrscheinlich, dass es von dort die Tagesrhythmik der Tiere steuert, da diese im entfernt liegenden Zellkern geregelt wird. Auch als zusätzliches Sehpigment zur Farbwahrnehmung dient das Cryptochrom 1 wahrscheinlich nicht. Die Forscher vermuten daher, dass einige Säugetiere das Cryptochrom 1 zur Wahrnehmung des Erdmagnetfeldes benutzen. Evolutionär gesehen entsprechen die Blauzapfen der Säugetiere den blau- bis UV-empfindlichen Zapfen der Vögel. Es ist also durchaus möglich, dass das Cryptochrom 1 der Säuger eine vergleichbare Funktion hat.

Tatsächlich deuten Beobachtungen an Füchsen, Hunden und sogar am Menschen daraufhin, dass diese das Erdmagnetfeld wahrnehmen können. Füchse zum Beispiel fangen Mäuse erfolgreicher, wenn sie ihre Beute in Nordost-Richtung anspringen. „Allerdings waren wir sehr überrascht, aktives Cryptochrom 1 nur in den Zapfenzellen von zwei Säugetiergruppen zu finden, denn auf das Magnetfeld reagieren auch Arten, deren Zapfen kein aktives Cryptochrom 1 besitzen, etwa einige Nagetiere und Fledermäuse“, sagt Christine Nießner.

Eine Erklärung dafür könnte sein, dass Tiere das Magnetfeld auch auf andere Art wahrnehmen können: zum Beispiel mit Hilfe von Magnetit, mikroskopisch kleinen eisenhaltigen Partikeln in Zellen. Ein Magnetit-basierter Magnetsinn funktioniert nach dem Prinzip eines Taschenkompasses und benötigt kein Licht. Die in lichtlosen Tunnelsystemen lebenden Graumulle beispielsweise orientieren sich mit einem solchen Kompass. Auch Vögel besitzen einen zusätzlichen, auf Magnetit beruhenden Orientierungsmechanismus, mit dem sie ihre Position bestimmen.

Bei der Erforschung des Magnetsinnes sind also noch viele grundsätzliche Fragen offen. Künftige Untersuchungen müssen zeigen, ob das Cryptochrom 1 in den Blauzapfen auch bei den Säugetieren zu einem Magnetsinn gehört oder ob es andere Aufgaben in der Netzhaut übernimmt.

Originalpublikation (Open Access):
Christine Nießner, Susanne Denzau, Erich Pascal Malkemper, Julia Christina Gross, Hynek Burda, Michael Winklhofer, Leo Peichl (2016) Cryptochrome 1 in Retinal Cone Photoreceptors Suggests a Novel Functional Role in Mammals. Scientific Reports 6, 21848; doi: 10.1038/srep21848.

Ansprechpartner:
Dr. Christine Nießner
Max-Planck-Institut für Hirnforschung, Frankfurt/M.
Telefon: +49 69 96769-239
E-Mail: c.niessner@bio.uni-frankfurt.de

Prof. Dr. Leo Peichl
Max-Planck-Institut für Hirnforschung, Frankfurt/M.
Telefon: +49 69 96769-348
E-Mail: leo.peichl@brain.mpg.de

Weitere Informationen:

http://www.mpg.de/10319313/magnetfeld-kompass-auge

Dr. Arjan Vink | Max-Planck-Institut für Hirnforschung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten