Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hunde und Affen besitzen Molekül für Magnetfeld-Wahrnehmung im Auge

24.02.2016

Hundeartige Raubtiere sowie einige Affenarten können sich möglicherweise ähnlich wie Vögel am Erdmagnetfeld orientieren.

Cryptochrome sind lichtempfindliche Moleküle, die in Bakterien, Pflanzen und Tieren vorkommen. Bei Tieren sind sie an der Steuerung der Tagesrhythmik des Körpers beteiligt. Außerdem ermöglichen Cryptochrome Vögeln die lichtabhängige Orientierung am Erdmagnetfeld: Cryptochrom 1a findet sich in Lichtsinneszellen des Vogelauges und wird vom Magnetfeld aktiviert.


Hunde und manche Affen besitzen in ihren Augen Moleküle, mit denen sie möglicherweise das Magnetfeld der Erde wahrnehmen können.

Leo Peichl

Forscher vom Frankfurter Max-Planck-Institut für Hirnforschung haben nun Cryptochrom 1 auch in Lichtsinneszellen mehrerer Säugetierarten gefunden. Möglicherweise besitzen diese Tiere also ebenfalls einen an das Sehsystem gekoppelten Magnetsinn.

Die Wahrnehmung des Erdmagnetfeldes hilft vielen Tierarten bei der Orientierung und Navigation. Einen solchen Magnetsinn haben zum Beispiel manche Insekten, Fische, Reptilien, Vögel und Säugetiere. Menschen scheinen dagegen das Magnetfeld der Erde nicht wahrnehmen zu können.

Bei Zugvögeln ist der Magnetsinn besonders gut untersucht: Im Gegensatz zu einem Pfadfinderkompass, der die Himmelsrichtung anzeigt, erkennt der Vogelkompass die Neigung der Magnetfeldlinien zur Erdoberfläche. Erstaunlicherweise ist dieser sogenannte Inklinationskompass der Vögel an das Sehsystem gekoppelt, denn das Magnetfeld aktiviert das lichtempfindliche Molekül Cryptochrom 1a in der Netzhaut des Vogelauges. Cryptochrom 1a liegt dort in den blau- bis UV-empfindlichen Zapfenzellen und reagiert auf das Magnetfeld nur, wenn es gleichzeitig durch Licht angeregt wird.

Christine Nießner und Leo Peichl vom Frankfurter Max-Planck-Institut für Hirnforschung haben zusammen mit Kollegen der Ludwig-Maximilians-Universität München, der Goethe-Universität Frankfurt am Main sowie der Universitäten Duisburg-Essen und Göttingen das Vorkommen von Cryptochrom 1 in der Netzhaut von 90 Säugetierarten untersucht.

Das Cryptochrom 1 der Säugetiere ist das Gegenstück zum Cryptochrom 1a der Vögel. Mit Hilfe von Antikörpern gegen die Licht-aktivierte Form haben sie Cryptochrom 1 nur in einigen Arten aus der Gruppe der Raubtiere und der Affen gefunden. Dort befindet es wie bei den Vögeln in den blau-empfindlichen Zapfen. Bei den Raubtieren besitzen hundeartige Säuger wie Hund, Wolf, Bär, Fuchs und Dachs das Molekül, katzenartige Raubtiere wie Katzen, Löwen und Tiger dagegen nicht. Bei Affen kommt Cryptochrom 1 zum Beispiel im Orang-Utan vor. Bei allen anderen der 16 untersuchten Säugetier-Ordnungen konnten die Forscher kein aktives Cryptochrom 1 in den Zapfenzellen der Netzhaut entdecken.

Das aktive Cryptochrom 1 sitzt in den lichtempfindlichen Außensegmenten der Zapfenzellen. Es ist deshalb unwahrscheinlich, dass es von dort die Tagesrhythmik der Tiere steuert, da diese im entfernt liegenden Zellkern geregelt wird. Auch als zusätzliches Sehpigment zur Farbwahrnehmung dient das Cryptochrom 1 wahrscheinlich nicht. Die Forscher vermuten daher, dass einige Säugetiere das Cryptochrom 1 zur Wahrnehmung des Erdmagnetfeldes benutzen. Evolutionär gesehen entsprechen die Blauzapfen der Säugetiere den blau- bis UV-empfindlichen Zapfen der Vögel. Es ist also durchaus möglich, dass das Cryptochrom 1 der Säuger eine vergleichbare Funktion hat.

Tatsächlich deuten Beobachtungen an Füchsen, Hunden und sogar am Menschen daraufhin, dass diese das Erdmagnetfeld wahrnehmen können. Füchse zum Beispiel fangen Mäuse erfolgreicher, wenn sie ihre Beute in Nordost-Richtung anspringen. „Allerdings waren wir sehr überrascht, aktives Cryptochrom 1 nur in den Zapfenzellen von zwei Säugetiergruppen zu finden, denn auf das Magnetfeld reagieren auch Arten, deren Zapfen kein aktives Cryptochrom 1 besitzen, etwa einige Nagetiere und Fledermäuse“, sagt Christine Nießner.

Eine Erklärung dafür könnte sein, dass Tiere das Magnetfeld auch auf andere Art wahrnehmen können: zum Beispiel mit Hilfe von Magnetit, mikroskopisch kleinen eisenhaltigen Partikeln in Zellen. Ein Magnetit-basierter Magnetsinn funktioniert nach dem Prinzip eines Taschenkompasses und benötigt kein Licht. Die in lichtlosen Tunnelsystemen lebenden Graumulle beispielsweise orientieren sich mit einem solchen Kompass. Auch Vögel besitzen einen zusätzlichen, auf Magnetit beruhenden Orientierungsmechanismus, mit dem sie ihre Position bestimmen.

Bei der Erforschung des Magnetsinnes sind also noch viele grundsätzliche Fragen offen. Künftige Untersuchungen müssen zeigen, ob das Cryptochrom 1 in den Blauzapfen auch bei den Säugetieren zu einem Magnetsinn gehört oder ob es andere Aufgaben in der Netzhaut übernimmt.

Originalpublikation (Open Access):
Christine Nießner, Susanne Denzau, Erich Pascal Malkemper, Julia Christina Gross, Hynek Burda, Michael Winklhofer, Leo Peichl (2016) Cryptochrome 1 in Retinal Cone Photoreceptors Suggests a Novel Functional Role in Mammals. Scientific Reports 6, 21848; doi: 10.1038/srep21848.

Ansprechpartner:
Dr. Christine Nießner
Max-Planck-Institut für Hirnforschung, Frankfurt/M.
Telefon: +49 69 96769-239
E-Mail: c.niessner@bio.uni-frankfurt.de

Prof. Dr. Leo Peichl
Max-Planck-Institut für Hirnforschung, Frankfurt/M.
Telefon: +49 69 96769-348
E-Mail: leo.peichl@brain.mpg.de

Weitere Informationen:

http://www.mpg.de/10319313/magnetfeld-kompass-auge

Dr. Arjan Vink | Max-Planck-Institut für Hirnforschung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie