Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die hohe Kunst des Schubladendenkens

18.10.2012
Ein Team von Neurobiologen am Wiener Forschungsinstitut für Molekulare Pathologie (IMP) widmet sich der Frage, wie das Gehirn stabile Kategorien bilden kann. Die Antwort liegt in bestimmten Eigenschaften von Nervenzell-Netzwerken. Die Zeitschrift Neuron berichtet in ihrer aktuellen Ausgabe.

Eine der faszinierenden Leistungen unseres Gehirns ist die Fähigkeit, die Welt in Kategorien wahrzunehmen. Wir erkennen das Gesicht eines bekannten Menschen unabhängig davon, ob wir die Person bei Tag oder bei Nacht treffen, ob mit oder ohne Brille. Ebenso bemerkenswert ist die Erkennung der Sprache: gleiche Silben hören wir als gleich, unabhängig vom Sprecher, von der Lautstärke oder von Umgebungsgeräuschen.


Das “Schubladendenken” oder die Fähigkeit, Kategorien zu bilden, ist eine hochentwickelte Funktion des Gehirns

Illustration: IMP

Unser Gehirn ermöglicht es uns auf faszinierende Weise, Konstanten in einer niemals exakt gleichen Umwelt wahrzunehmen. Während solche Kategorisierungen beim Menschen automatisch ablaufen und uns nicht einmal bewusst werden, ist es nur sehr schwer möglich, entsprechende Aufgaben mit einem Computer zu lösen.

Viele Zellen – wenige Muster

Wissenschaftler am IMP um den Neurobiologen Simon Rumpel und seinen Postdoktoranden Brice Bathellier konnten nun an Nervenzell-Netzwerken in der Großhirnrinde bestimmte Eigenschaften nachweisen, die allem Anschein nach für die Bildung von Kategorien verantwortlich sind. In Versuchen mit Mäusen ließen die Forscher unterschiedliche Töne und Geräusche erklingen und zeichneten dabei die Aktivitätsmuster von Nervenzell-Gruppen in der Hörrinde des Gehirns auf. Sie stellten fest, dass Ensembles von etwa 50 bis 100 miteinander verschalteten Zellen trotz vielfältigster Klänge nur sehr wenige, diskrete Muster erzeugen. Das bedeutet, dass unterschiedliche Geräusche in einem Aktivitätsmuster zusammengefasst und in eine funktionelle Kategorie eingeordnet werden.

In Experimenten, in denen das Geräusch kontinuierlich verändert wurde, konnten die Forscher keine kontinuierliche Veränderung des Antwortmusters beobachten, sondern einen abrupten Übergang von einem Muster in ein anderes. Solch ein dynamisches Verhalten ähnelt dem von künstlichen Attraktor -Netzwerken, die bereits vor Jahren von Theoretikern als eine mögliche Lösung des Kategorisierungsproblems vorgeschlagen wurden. Der Begriff Attraktor stammt aus der Chaosforschung und bezeichnet einen stabilen Zustand, dem sich ein dynamisches System annähert. Etwas salopper ausgedrückt, werden die akustischen Reize im Gehirn in bestimmten „Schubladen“ abgelegt, die den möglichen Antworten von Nervenzell-Gruppen entsprechen.

Rasterfahndung im Gehirn

Simon Rumpel zieht noch einen anderen Vergleich: „Wir können uns den Vorgang der akustischen Repräsentation wie eine Rasterfahndung vorstellen. Einzelne Neuronengruppen können immer nur wenige Eigenschaften eines Sinnesreizes wiedergeben (hoher Ton oder tiefer Ton, laut oder leise usw.). Erst wenn über die Gesamtheit der Neuronen integriert wird, entsteht der komplette Eindruck des Geräuschs mit all seinen Schattierungen.“

Die Ergebnisse der Aktivitätsmessungen im Gehirn wurden durch Verhaltensexperimente mit Mäusen bestätigt. Zunächst trainierte man die Tiere darauf, zwei Töne zu unterscheiden. Ob das Antwortverhalten auf einen dritten Ton eher dem ersten oder zweiten Ton entsprach, diente als Maß der Ähnlichkeit der Wahrnehmung. Interessanterweise zeigte sich, dass die Ähnlichkeit in der Wahrnehmung durch den Vergleich der durch die entsprechenden Töne ausgelösten Aktivitätsmuster in der Hörrinde vorhergesagt werden konnte.

Mit der Arbeit, die in der aktuellen Ausgabe der Zeitschrift NEURON veröffentlicht wird, können die IMP-Forscher erstmals nachweisen, dass die Bildung von Kategorien auf der dynamischen Eigenschaft von Nervennetzen in der Gehirnrinde beruht. Es könnte sich dabei um ein fundamentales Prinzip höherer Gehirnfunktionen handeln, das etwa auch bei der Verarbeitung von Sprache eine Rolle spielt.

Die Arbeit "Discrete neocortical dynamics predict behavioural categorization of sounds" von Brice Bathellier et al. erscheint am 18. Oktober 2012 in der Zeitschrift Neuron. (DOI 10.1016/j.neuron.2012.07.008)

Über Simon Rumpel
Simon Rumpel wurde 1972 in Erlangen geboren. Er studierte Biologie in Bochum und promovierte 2001 über ein neurowissenschaftliches Thema. Die folgenden fünf Jahre verbrachte er als Postdoktorand am Cold Spring Harbor Laboratory in New York, wo er sich mit den neuronalen Grundlagen des Gedächtnisses beschäftigte. Seit 2006 ist Simon Rumpel Gruppenleiter am Forschungsinstitut für Molekulare Pathologie in Wien.
Über das IMP
Das Forschungsinstitut für Molekulare Pathologie betreibt in Wien biomedizinische Grundlagenforschung und wird dabei maßgeblich von Boehringer Ingelheim unterstützt. Mehr als 200 ForscherInnen aus über 30 Nationen widmen sich der Aufklärung grundlegender molekularer und zellulärer Vorgänge, um komplexe biologische Phänomene im Detail zu verstehen und Krankheitsmechanismen zu entschlüsseln.

Kontakt:
Dr. Heidemarie Hurtl
IMP Communications
Tel.: (+43 1) 79730 3625
Mobil: 0664/8247910
hurtl@imp.ac.at

Wissenschaftlicher Kontakt:
rumpel@imp.ac.at

Dr. Heidemarie Hurtl | idw
Weitere Informationen:
http://www.imp.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie