Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die hohe Kunst des Schubladendenkens

18.10.2012
Ein Team von Neurobiologen am Wiener Forschungsinstitut für Molekulare Pathologie (IMP) widmet sich der Frage, wie das Gehirn stabile Kategorien bilden kann. Die Antwort liegt in bestimmten Eigenschaften von Nervenzell-Netzwerken. Die Zeitschrift Neuron berichtet in ihrer aktuellen Ausgabe.

Eine der faszinierenden Leistungen unseres Gehirns ist die Fähigkeit, die Welt in Kategorien wahrzunehmen. Wir erkennen das Gesicht eines bekannten Menschen unabhängig davon, ob wir die Person bei Tag oder bei Nacht treffen, ob mit oder ohne Brille. Ebenso bemerkenswert ist die Erkennung der Sprache: gleiche Silben hören wir als gleich, unabhängig vom Sprecher, von der Lautstärke oder von Umgebungsgeräuschen.


Das “Schubladendenken” oder die Fähigkeit, Kategorien zu bilden, ist eine hochentwickelte Funktion des Gehirns

Illustration: IMP

Unser Gehirn ermöglicht es uns auf faszinierende Weise, Konstanten in einer niemals exakt gleichen Umwelt wahrzunehmen. Während solche Kategorisierungen beim Menschen automatisch ablaufen und uns nicht einmal bewusst werden, ist es nur sehr schwer möglich, entsprechende Aufgaben mit einem Computer zu lösen.

Viele Zellen – wenige Muster

Wissenschaftler am IMP um den Neurobiologen Simon Rumpel und seinen Postdoktoranden Brice Bathellier konnten nun an Nervenzell-Netzwerken in der Großhirnrinde bestimmte Eigenschaften nachweisen, die allem Anschein nach für die Bildung von Kategorien verantwortlich sind. In Versuchen mit Mäusen ließen die Forscher unterschiedliche Töne und Geräusche erklingen und zeichneten dabei die Aktivitätsmuster von Nervenzell-Gruppen in der Hörrinde des Gehirns auf. Sie stellten fest, dass Ensembles von etwa 50 bis 100 miteinander verschalteten Zellen trotz vielfältigster Klänge nur sehr wenige, diskrete Muster erzeugen. Das bedeutet, dass unterschiedliche Geräusche in einem Aktivitätsmuster zusammengefasst und in eine funktionelle Kategorie eingeordnet werden.

In Experimenten, in denen das Geräusch kontinuierlich verändert wurde, konnten die Forscher keine kontinuierliche Veränderung des Antwortmusters beobachten, sondern einen abrupten Übergang von einem Muster in ein anderes. Solch ein dynamisches Verhalten ähnelt dem von künstlichen Attraktor -Netzwerken, die bereits vor Jahren von Theoretikern als eine mögliche Lösung des Kategorisierungsproblems vorgeschlagen wurden. Der Begriff Attraktor stammt aus der Chaosforschung und bezeichnet einen stabilen Zustand, dem sich ein dynamisches System annähert. Etwas salopper ausgedrückt, werden die akustischen Reize im Gehirn in bestimmten „Schubladen“ abgelegt, die den möglichen Antworten von Nervenzell-Gruppen entsprechen.

Rasterfahndung im Gehirn

Simon Rumpel zieht noch einen anderen Vergleich: „Wir können uns den Vorgang der akustischen Repräsentation wie eine Rasterfahndung vorstellen. Einzelne Neuronengruppen können immer nur wenige Eigenschaften eines Sinnesreizes wiedergeben (hoher Ton oder tiefer Ton, laut oder leise usw.). Erst wenn über die Gesamtheit der Neuronen integriert wird, entsteht der komplette Eindruck des Geräuschs mit all seinen Schattierungen.“

Die Ergebnisse der Aktivitätsmessungen im Gehirn wurden durch Verhaltensexperimente mit Mäusen bestätigt. Zunächst trainierte man die Tiere darauf, zwei Töne zu unterscheiden. Ob das Antwortverhalten auf einen dritten Ton eher dem ersten oder zweiten Ton entsprach, diente als Maß der Ähnlichkeit der Wahrnehmung. Interessanterweise zeigte sich, dass die Ähnlichkeit in der Wahrnehmung durch den Vergleich der durch die entsprechenden Töne ausgelösten Aktivitätsmuster in der Hörrinde vorhergesagt werden konnte.

Mit der Arbeit, die in der aktuellen Ausgabe der Zeitschrift NEURON veröffentlicht wird, können die IMP-Forscher erstmals nachweisen, dass die Bildung von Kategorien auf der dynamischen Eigenschaft von Nervennetzen in der Gehirnrinde beruht. Es könnte sich dabei um ein fundamentales Prinzip höherer Gehirnfunktionen handeln, das etwa auch bei der Verarbeitung von Sprache eine Rolle spielt.

Die Arbeit "Discrete neocortical dynamics predict behavioural categorization of sounds" von Brice Bathellier et al. erscheint am 18. Oktober 2012 in der Zeitschrift Neuron. (DOI 10.1016/j.neuron.2012.07.008)

Über Simon Rumpel
Simon Rumpel wurde 1972 in Erlangen geboren. Er studierte Biologie in Bochum und promovierte 2001 über ein neurowissenschaftliches Thema. Die folgenden fünf Jahre verbrachte er als Postdoktorand am Cold Spring Harbor Laboratory in New York, wo er sich mit den neuronalen Grundlagen des Gedächtnisses beschäftigte. Seit 2006 ist Simon Rumpel Gruppenleiter am Forschungsinstitut für Molekulare Pathologie in Wien.
Über das IMP
Das Forschungsinstitut für Molekulare Pathologie betreibt in Wien biomedizinische Grundlagenforschung und wird dabei maßgeblich von Boehringer Ingelheim unterstützt. Mehr als 200 ForscherInnen aus über 30 Nationen widmen sich der Aufklärung grundlegender molekularer und zellulärer Vorgänge, um komplexe biologische Phänomene im Detail zu verstehen und Krankheitsmechanismen zu entschlüsseln.

Kontakt:
Dr. Heidemarie Hurtl
IMP Communications
Tel.: (+43 1) 79730 3625
Mobil: 0664/8247910
hurtl@imp.ac.at

Wissenschaftlicher Kontakt:
rumpel@imp.ac.at

Dr. Heidemarie Hurtl | idw
Weitere Informationen:
http://www.imp.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten