Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochreaktiver Goldcarbenkomplex mit leuchtend smaragdgrüner Farbe

09.07.2014

Heidelberger Chemikern gelingt es, eine Kohlenstoff-Gold-Verbindung mit „erstaunlicher Stabilität“ zu isolieren

Mit einem chemischen „Trick“ ist es Wissenschaftlern der Universität Heidelberg gelungen, einen stabilen Goldcarbenkomplex zu isolieren. Damit hat das Team um den Chemiker Prof. Dr. Bernd F. Straub die Grundlage dafür geschaffen, die ansonsten instabile Doppelbindung zwischen Kohlenstoff und Gold erstmals direkt untersuchen zu können.


In der Abbildung ist die Au=C-Doppelbindung im Goldcarbenkomplex die Bindung zwischen dem großen goldenen Atom in der Mitte und dem leicht grünlich gefärbten Atom darunter. Die Position der Atome wurde mit Hilfe einer Einkristall-Röntgenstrukturanalyse ermittelt.

Copyright: Matthias Hussong und Bernd F. Straub, Universität Heidelberg

Die hochreaktiven Goldcarben-Teilchen spielen nach Angaben von Prof. Straub eine wichtige Rolle in wegweisenden Katalyseprozessen mit hohen Reaktionsgeschwindigkeiten. Die Ergebnisse der Forschungsarbeiten wurden in der deutschsprachigen und in der internationalen Ausgabe der Fachzeitschrift „Angewandte Chemie“ veröffentlicht.

Mit Hilfe von Katalysatoren lassen sich chemische Reaktionen beschleunigen und aus den Grundstoffen der Natur Werkstoffe und Materialien sowie Arzneistoffe herstellen. Dabei werden auch chemische Verbindungen mit Gold intensiv und, so Prof. Straub, erfolgreich in Prozessen der Katalyse untersucht.

„Seit mehr als zehn Jahren schlagen Experten in zahlreichen wissenschaftlichen Arbeiten Goldcarbene als kurzlebige Schlüsselverbindungen in Katalysereaktionen vor“, erläutert der Heidelberger Wissenschaftler. Mit ihrer hohen Reaktivität entziehen sie sich jedoch detaillierten Untersuchungen: Kaum wird ein Goldcarben-Fragment bestehend aus den Elementen Gold und Kohlenstoff – mit den Symbolen „Au“ für Aurum und „C“ für Carbon – gebildet, reagiert es gleich weiter.

Um erstmals eine stabile Verbindung zu schaffen und die Goldcarben-Teilchen für die Forschung zu isolieren, wurden beide Elemente wie ein „hungriger Tiger mit einem Köder in einen Käfig gelockt“, so Matthias Hussong, der im Team von Prof. Straub an seiner Dissertation arbeitet.

Die Forscher haben dazu Gold und Kohlenstoff zunächst von ihrer Umgebung abgeschirmt, indem sie um diese herum reaktionsträge und raumfüllende chemische Gruppen platzierten. Anschließend wurden die beiden Elemente in einem sorgfältig geplanten Schritt aneinander gebunden – damit war das Au=C-Fragment im Goldcarbenkomplex „gefangen“.

Der so isolierten Verbindung konnten die Chemiker zu einer „erstaunlichen Stabilität verhelfen“, wie Prof. Straub sagt – und sie damit zugleich buchstäblich sichtbar machen. „Fast alle Goldkomplexe sind farblos, das ,stabile‘ Goldcarben dagegen weist eine intensive smaragdgrüne Farbe auf“, erklärt der Wissenschaftler, der eine Forschungsgruppe am Organisch-Chemischen Institut der Universität Heidelberg leitet.

Dabei haben die weiteren Heidelberger Untersuchungen gezeigt, dass Gold in seinen Verbindungen mehr ist als ein sogenanntes „weiches Proton“, wie das chemische Verhalten von Gold bislang beschrieben wurde.

Wird das Goldfragment durch ein „echtes“ Proton – den Kern des leichtesten Elements Wasserstoff – ersetzt, zeigt dieses analoge protonierte Carben eine purpurrote Farbe. „Damit verhält sich das Gold im Goldcarbenkomplex im Wortsinne ,augenscheinlich‘ anders als ein Proton“, so Prof. Straub. Mit seinem Team arbeitet er nun daran, das Verständnis der Goldkatalyse weiter zu vertiefen und dieses Wissen für Katalyseprozesse mit höherer Effizienz nutzbar zu machen.

Originalveröffentlichung:
Hussong, M. W., Rominger, F., Krämer, P. und Straub, B. F.: Isolierung eines nicht-Heteroatom-stabilisierten Goldcarbens. Angew. Chem. (online veröffentlicht am 20. Juni 2014), doi: 10.1002/ange.201404032
Hussong, M. W., Rominger, F., Krämer, P. and Straub, B. F.: Isolation of a Non-Heteroatom-Stabilized Gold–Carbene Complex. Angew. Chem. Int. Ed. (published online 20 June 2014), doi: 10.1002/anie.201404032

Informationen im Internet:
http://www.uni-heidelberg.de/fakultaeten/chemgeo/oci/akstraub/index.html

 
Kontakt:
Prof. Dr. Bernd F. Straub
Organisch-Chemisches Institut
Telefon (06221) 54-6239
straub@oci.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Chem Chemiker Elemente Farbe Isolierung Katalysatoren Kohlenstoff Käfig Köder Trick Werkstoffe Wissenschaftler

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden neue Ansätze gegen Wirkstoffresistenzen in der Tumortherapie
15.12.2017 | Universität Leipzig

nachricht Moos verdoppelte mehrmals sein Genom
15.12.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik