Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochflexibel trotz fester Verschaltung – schon leichte Reize ändern den Informationsfluss im Gehirn

26.03.2012
Ein Kelch oder zwei Gesichter?

Was wir in einer der bekanntesten optischen Illusionen zu sehen glauben, wechselt in Sekundenbruchteilen; und damit auch der Weg, den die Information im Gehirn nimmt.


Gesichter oder Vase? Weil Netzwerke im Gehirn sehr schnell ihre Organisation ändern können, nehmen wir unterschiedliche Bildelemente wahr.
Bild: Demian Battaglia/MPI für Dynamik u. Selbstorganisation

Wie dies möglich ist, ohne die zellulären Verknüpfungen des Netzwerks zu ändern, konnten Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation, des Bernstein Zentrums Göttingen und des Deutschen Primatenzentrums in einer theoretischen Studie zeigen. Je nachdem, in welchem zeitlichen Muster Hirnareale kommunizieren, ändert sich der Informationsfluss. Um dessen Umorganisation auszulösen, genügt bereits ein leichter Reiz, etwa ein Duft oder Ton, zur rechten Zeit.

Wie Gehirnareale miteinander verschaltet sind, spielt bei der Informationsverarbeitung eine wichtige Rolle. Durch den Auf- und Abbau der Nervenverbindungen zwischen Hirnarealen kann diese Verarbeitung verändert werden. Doch solche Vorgänge sind viel zu langsam, um schnelle Veränderungen in der Wahrnehmung zu erklären. Aus experimentellen Studien weiß man, dass die verantwortlichen Prozesse mindestens zwei Größenordnungen schneller sein müssen. Die Göttinger Wissenschaftler zeigen nun erstmals anhand von Computersimulationen, dass es möglich ist, in einem fest verschalteten Netzwerk den Informationsfluss auf einfache Weise zu verändern.

Viele Hirnareale zeigen regelmäßige Nervenzellaktivität. „Die interagierenden Hirnbereiche verhalten sich wie Metronome, die mit der gleichen Geschwindigkeiten und in einem bestimmten zeitlichen Muster schlagen“, erklärt der Physiker und Leiter der Studie Dr. Demian Battaglia. Die Forscher konnten nun zeigen, dass dieses Muster den Informationsfluss bestimmt. „Beeinflusst man eines der Metronome, etwa durch einen äußeren Reiz, schlägt es danach mit einer anderen Geschwindigkeit oder in einem veränderten zeitlichen Muster mit den anderen Metronomen. Die anderen Areale stellen sich durch Selbstorganisationsprozesse darauf ein und spielen selbst in einem neuen Rhythmus. Darum genügt es, im Netzwerk eines der Areale zu beeinflussen, um die Funktionsweise des Netzwerks vollständig zu verändern“, sagt Battaglia.

Der äußere Einfluss muss nicht besonders groß sein. „Wichtiger ist, dass der ‚Kick’ genau zum richtigen Zeitpunkt im Rhythmus erfolgt“, erklärt Battaglia. Der Prozess könnte in der Wahrnehmung von wesentlicher Bedeutung sein: „Wir sind darauf gepolt, in einem Bild möglichst schnell Gesichter zu erkennen, selbst wenn da keine sind. Wenn aber ein Duft an Wein erinnert, sehen wir sofort den Kelch im Bild. Dadurch können wir uns auch schnell auf Dinge einstellen, die wir nicht erwartet haben, indem wir den Fokus unserer Aufmerksamkeit verschieben“, erläutert der Göttinger Forscher.

Als nächstes möchten die Wissenschaftler das Modell an anatomisch realistischeren Netzwerken testen. Außerdem erhoffen sie sich, dass davon auch experimentelle Studien inspiriert werden, wie Battaglia meint: „Es wäre fantastisch, wenn in einigen Jahren einzelne Bereiche im Gehirn so fein und exakt stimuliert werden können, dass die von uns theoretisch vorhergesagten Effekte durch bildgebende Verfahren messbar werden.“

Das Bernstein Zentrum Göttingen ist Teil des Nationalen Bernstein Netzwerks Computational Neuroscience (NNCN). Das NNCN wurde vom BMBF mit dem Ziel gegründet, die Kapazitäten im Bereich der neuen Forschungsdisziplin Computational Neuroscience zu bündeln, zu vernetzen und weiterzuentwickeln. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Original-Veröffentlichung:
Battaglia D, Witt A, Wolf F, Geisel T (2012): Dynamic effective connectivity of inter-areal brain circuits. PLoS Comp Biol, 10.1371/journal.pcbi.1002438 http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1002438
Weitere Informationen erteilt Ihnen gerne:
Dr. Demian Battaglia
demian@nld.ds.mpg.de
Tel: +49 551 5176 405
Max-Planck-Institut für Dynamik und Selbstorganisation und
Bernstein Zentrum Computational Neuroscience Göttingen
Am Faßberg 17
37077 Göttingen
Weitere Informationen:
http://www.bccn-goettingen.de Bernstein Zentrum Göttingen
http://www.ds.mpg.de Max-Planck-Institut für Dynamik und Selbstorganisation
http://www.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience
http://www.mpg.de Max-Planck-Gesellschaft
http://www.dpz.eu Deutsches Primatenzentrum GmbH – Leibniz-Institut für Primatenforschung

Johannes Faber | idw
Weitere Informationen:
http://www.nncn.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie