Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochelastische Superkondensatoren

03.07.2017

Ein Elektrolyt aus einem Polyacrylamid-Hydrogel macht Superkondensatoren außerordentlich dehnbar und komprimierbar

Elastische Elektroniksysteme benötigen eine ebenso elastische Stromquelle. Chinesische Wissenschaftler stellen jetzt in der Zeitschrift Angewandte Chemie ein Polyelektrolytmaterial für einen außerordentlich dehnbaren und komprimierbaren Superkondensator vor.


Streck- und komprimierbare Superkondensatoren.

(c) Wiley-VCH

Ausgestattet mit Papierelektroden aus einem Kohlenstoffnanoröhren-Verbundmaterial, kann dieser Superkondensator auf das mehr als Zehnfache seiner Länge gestreckt und bis auf die Hälfte seiner Dicke komprimiert werden. Dabei gewinnt er noch an Kapazität.

Superkondensatoren füllen die Lücke zwischen (wiederaufladbaren) Batterien und normalen Kondensatoren aus. Während Batterien vor allem als Energiespeicher und -Quelle genutzt werden, dienen Kondensatoren zur raschen Ladung und Entladung, können aber nicht viel Energie speichern.

Superkondensatoren besitzen nun zusätzlich zu einer großen Lade- und Entladekapazität eine überaus hohe Energie- und Leistungsdichte. Sie werden zum Beispiel bei der Rekuperation in elektrischen Fahrzeugen oder als Speicherpuffer in Windrädern und – immer mehr – in elektronischen Kleingeräten wie Laptops oder Digitalkameras verwendet.

Um sie für Zukunftsthemen wie intelligente Kleidung oder elektronisches Papier fit zu machen, arbeiten Chunyi Zhi von der City University of Hong Kong und Kollegen an immer stärker mechanisch beanspruchbaren Superkondensatoren. Dafür haben sie jetzt einen Polyelektrolyten für Superkondensatoren entwickelt, der sich auf das Zehnfache seiner Länge dehnen und auf die Hälfte seiner Dicke zusammenpressen lässt, ohne Spuren von Beanspruchung zu zeigen.

Als Elektrolyt in Superkondensatoren wird häufig ein Gel aus Polyvinylalkohol verwendet. Eine gewisse Biegsamkeit oder Dehnbarkeit erreicht man durch elastische Zusatzstoffe wie Kautschuk oder bestimmte Fasern. Der Elektrolyt von Zhi ist anders aufgebaut: Ein Polyacrylamid(PAM)-Hydrogel wird durch Vinyl-funktionalisierte Nanopartikeln aus Siliciumdioxid (VSPNs) verstärkt.

Die Vinyl-Siliciumdioxid-Nanopartikel vernetzen die polymeren Komponenten im Gel und machen es stark dehnbar, während der Polyelektrolyt Wasser und Ionen aufnimmt und somit für die Leitfähigkeit sorgt. „Der VSNP-Quervernetzer dient als Puffer, um die Spannungsenergie abzuleiten und das PAM-Netzwerk zu homogenisieren. Durch diese Synergie erreicht unser Superkondensator eine enorme intrinsische Dehnbarkeit und Komprimierbarkeit”, erklärt Zhi.

Einen funktionsfähigen Superkondensator bauten die Forscher durch Auflegen von zwei identischen Papierelektroden aus einem Kohlenstoffnanoröhren-Verbundmaterial auf jede Seite des maximal gedehnten Polyelektrolytfilms. Lässt die Spannung nach, entsteht eine ziehharmonikaartige Struktur mit überraschender Elektrochemie:

„Die elektrochemische Leistung steigt an, wenn der Spannungsstress größer wird”, bemerkten die Wissenschaftler. Und der Spannungsstress war gewaltig: Bis zu einer Dehnung auf 1000 Prozent und einer Kompression auf die Hälfte seiner Dicke überstand der Superkondensator unbeschadet, und das bei gleicher oder sogar höherer Kapazität. Für künftige Entwicklungen von in Stoffen und Papier integrierter Elektronik dürfte daher dieser Polyelektrolyt höchst interessant sein.

Angewandte Chemie: Presseinfo 28/2017

Autor: Chunyi Zhi, City University of Hong Kong, mailto:cy.zhi@cityu.edu.hk

Link zum Originalbeitrag: https://doi.org/10.1002/ange.201705212

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

http://presse.angewandte.de

Dr. Karin J. Schmitz | Gesellschaft Deutscher Chemiker e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neurobiologie - Die Chemie der Erinnerung
21.11.2017 | Ludwig-Maximilians-Universität München

nachricht Diabetes: Immunsystem kann Insulin regulieren
21.11.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie