Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Herz in der Petrischale

04.03.2013
Herzgewebe neu herstellen statt Spenderherzen transplantieren: An der TU Wien wurden Substanzen entwickelt, mit denen man funktionsfähige Herzzellen wachsen lassen kann.

Aufgeschürfte Haut wächst rasch wieder nach, geschädigtes Herzgewebe kaum – daher hinterlässt ein Herzinfarkt oft schwere langfristige Schäden. An der TU Wien wurden nun Substanzen entwickelt, die körpereigene Vorläuferzellen in funktionsfähige, schlagende Herzmuskelzellen umwandeln.


Zukunftsvision: Herzgewebe aus dem Labor
TU Wien

Diese Entdeckung könnte die Tür zu einer ganz neuen Art der regenerativen Medizin öffnen. Prof. Mihovilovic von der TU Wien wurde dafür mit dem silbernen Inventum-Preis des Österreichischen Patentamtes ausgezeichnet.

Schlagende Herzmuskelzellen im Labor

Embryonale Stammzellen können sich zu beliebigen Gewebetypen weiterentwickeln. Adulte Stammzellen können sich auch noch in unterschiedliche Zelltypen umwandeln, haben aber schon ein deutlich geringeres Differenzierungspotenzial.
„Welche Mechanismen die Differenzierung von Stammzellen zum Gewebe im Detail beeinflussen ist heute bei Weitem noch nicht verstanden“, sagt Prof. Marko Mihovilovic (Institut für Angewandte Synthesechemie, TU Wien). Seiner Forschungsgruppe gelang es nun allerdings, Substanzen herzustellen, mit denen sich diese Differenzierung ganz gezielt steuern lässt: So kann man Vorläuferzellen zu neuem Herzgewebe werden lassen, das schließlich direkt in der Petrischale zu schlagen beginnt.

„Von verschiedenen Substanzen ist bekannt, dass sie eine Auswirkung auf die Entwicklung von Herzgewebe haben. Wir haben systematisch Verbindungen mit cardiogenem Potential synthetisiert und getestet“, erklärt Thomas Linder, der zusammen mit Kollegin Moumita Koley an der TU Wien über die Differenzierung von Herzgewebe arbeitet. Diese maßgeschneiderten Substanzen werden dann an der Medizinischen Universität Wien an den Vorläuferzellen von Mäusen getestet. „Mit unseren neuen Triazin-Derivatengelang eine dramatische Effizienzsteigerung im Umwandeln von Vorläuferzellen zu Herzzellen im Vergleich zu bereits bekannten Substanzen, die bislang erprobt wurden“, sagt Marko Mihovilovic. Das Team der TU Wien hat die neuen Verbindungen inzwischen patentiert.
Baukastensystem für Moleküle

Der entscheidende Vorteil der Syntheseverfahren, die an der TU Wien entwickelt wurden, ist ihre Flexibilität: „Unsere modularen Synthesestrategien kann man mit LEGO-Bausteinen vergleichen: Aus sehr einfachen Grundbausteinen lässt sich rasch ein hohes Maß an Komplexität schaffen“, sagt Marko Mihovilovic. So können viele verschiedene Abwandlungen der Substanzen hergestellt werden, ohne jedes Mal ein neues Syntheseverfahren entwickeln zu müssen.

Die Tür zu neuer Medizin

Nun geht es darum, aus dem neuen pharmakologischen Werkzeug einen echten Wirkstoff zu entwickeln, der für den Menschen eingesetzt werden kann. „Wichtig ist es, den genauen Wirkmechanismus aufzuklären. Wir wollen auf molekularer Ebene verstehen, wie unsere Substanzen Einfluss auf die Zellentwicklung nehmen“, sagt Mihovilovic. Kennt man diesen Mechanismus, sollte es möglich sein, gezielte Therapieformen zu erarbeiten.

„Wir wollen die Tür zu einer völlig neuen Art der regenerativen Medizin aufstoßen“, hofft Marko Mihovilovic. „Derzeit steht die Transplantationsmedizin im Vordergrund, doch viel besser wäre es, im Labor das passende neue Gewebe herstellen zu können – mit der Original-DNA der Patienten, sodass Abstoßungsreaktionen ausgeschlossen sind.“
Nicht nur die Differenzierung von Vorläuferzellen zu funktionalem Gewebe kann man durch chemische Signale steuern. Es ist sogar möglich den umgekehrten Weg zu gehen und aus ausdifferenzierten Zellen wieder pluripotente Zellen zu generieren, die sich danach zu unterschiedlichen Gewebetypen entwickeln können. „Unsere Zukunftsvision ist: Wir verwenden Zellmaterial, das leicht zu entnehmen ist, etwa aus der Haut, behandeln es mit einem Cocktail verschiedener Chemikalien und lassen dadurch neues Gewebe entstehen“, sagt Mihovilovic. Die Synthesechemie soll helfen, die beschränkte Regenerationsfähigkeit des Herzens zu überwinden. Wenn sich die Therapie auf den Menschen übertragen lässt, würde das die Lebensqualität der PatientInnen drastisch verbessern und auch die Kosten für das Gesundheitssystem verringern.

Auszeichnung durch das Österreichische Patentamt

Das Österreichische Patentamt zeichnete am 4. März die besten Patente des vergangenen Jahres mit dem INVENTUM-Award aus. Die Synthesechemie-Forschungsgruppe an der TU Wien errang dabei den zweiten Platz und kann die silberne Inventum-Trophäe mit nach Hause nehmen. „Wir freuen uns über diese Anerkennung unseres ersten großen Schrittes auf dem Weg zum maßgeschneiderten Herzgewebe. Wir hoffen, dass wir die nächsten Schritte genauso erfolgreich setzen können“, sagt Marko Mihovilovic.

Rückfragehinweise:

Prof. Marko Mihovilovic
Institut für Angewandte Synthesechemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-163615
marko.mihovilovic@tuwien.ac.at

Dipl.-Ing. Thomas Linder
Institut für Angewandte Synthesechemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-163272
thomas.linder@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://youtu.be/Wb9hMuq-_y0
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/herz/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Salmonellen als Medikament gegen Tumore
23.10.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Add-ons: Was Computerprogramme und Proteine gemeinsam haben
23.10.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie