Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hemmende Synapsen beeinflussen Signale im Gehirn mit hoher Präzision

07.08.2015

Nervenzellsignale können von einzelnen Kontakten moduliert und blockiert werden

Informationen werden in unserem Gehirn über Billionen von Synapsen von einer Zelle zur nächsten weitergegeben. Für einen optimalen Datenfluss ist jedoch nicht nur die Übertragung von Informationen wichtig, sondern auch ihre gezielte Hemmung.


Hemmende Nervenzellen (grün) können über einzelne Synapsen die Signalverarbeitung in Zellen der Großhirnrinde (rot) modulieren oder blockieren.

© MPI für Neurobiologie / Müllner

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried konnten nun in Mäusen zeigen, dass selbst einzelne hemmende Synapsen die Signalverarbeitung maßgeblich beeinflussen können. Die Studie ergänzt ein wichtiges Puzzleteil zum Verständnis dieser grundlegenden Gehirnfunktion, die auch bei manchen Krankheiten eine Rolle spielt.

Das menschliche Gehirn besteht aus rund 100 Milliarden Nervenzellen. Jede dieser Zellen ist über mehrere hundert bis tausend Synapsen mit anderen Zellen verbunden. Unser Denken, Handeln und Fühlen, aber auch unsere Organ- und Körperfunktionen werden durch die synaptische Informationsweitergabe gesteuert – in jeder Sekunde sind es viele Billiarden Impulse.

Damit dieser enorme Datenstrom in geregelten Bahnen läuft, gibt es erregende Synapsen, die Informationen zwischen Zellen weitergeben, und hemmende Synapsen, die den Informationsfluss eingrenzen und verändern.

Wie wichtig auch das Unterdrücken unerwünschter Signale ist, zeigt sich unter anderem, wenn die Funktion der hemmenden Synapsen gestört ist: Es kommt zu einer überhöhten Erregung im Gehirn, wie sie zum Beispiel bei Epilepsie zu sehen ist. Doch auch um zu lernen, oder sich zu erinnern, braucht das Gehirn Nervenzellen, die die Aktivität anderer Nervenzellen regulieren.

Die meisten dieser hemmenden Synapsen docken an die Empfangseinheit der Zielzelle an, die Dendriten. Welche Wirkung diese hemmenden Synapsen jedoch genau haben und wie präzise sie agieren, war bislang nicht erforscht.

Wissenschaftler des Max-Planck-Instituts für Neurobiologie konnten nun in Mäusen zeigen, dass selbst einzelne hemmende Synapsen die Signalverarbeitung in den Dendriten anderer Zellen entscheidend beeinflussen. Die Neurobiologen untersuchten den Einfluss der dendritischen Hemmung auf Nervenzellen im Hippocampus, einem Gehirnbereich, in dem unter anderem Kurzzeit- in Langzeiterinnerungen umgewandelt werden.

Mit einer fein abgestimmten Kombination verschiedener Methoden konnten die Forscher durch das Mikroskop beobachten, wie schon einzelne hemmende Synapsen die Stärke und Ausbreitung eines Signals in der gehemmten Nervenzelle erheblich veränderten. Die Ergebnisse zeigen, dass Nervenzellsignale durch hemmende Synapsen mit einer Präzision von wenigen Millisekunden und Mikrometern in ihrer Amplitude reguliert werden können.

Es war bekannt, dass hemmende Nervenzellen eine sehr grundlegende Funktion im Gehirn erfüllen. "Dass aber bereits einzelne hemmende Synapsen eine wichtige Rolle spielen und eine so präzise Wirkung haben, hat uns richtig fasziniert", erklärt Fiona Müllner, die Erstautorin der gerade erschienenen Studie.

 Aufbauend auf ihre Ergebnisse konnten die Wissenschaftler mit Hilfe eines Modells zeigen, wie einzelne hemmende Synapsen sogar die synaptische Plastizität, die Grundlage für Lernen und Gedächtnis, kontrollieren könnten. "Uns interessiert jetzt natürlich ganz besonders, welche Einflüsse eine so präzise Hemmung auf die Speicherung von Information im Nervensystem hat ", fügt Tobias Bonhoeffer hinzu, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie die Grundlagen der synaptischen Plastizität untersucht.

Prof. Dr. Tobias Bonhoeffer | Max-Planck-Institut für Neurobiologie, Martinsried
Weitere Informationen:
http://www.mpg.de/9349088/synapsen-signale-gehirn

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten