Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hemmende Synapsen beeinflussen Signale im Gehirn mit hoher Präzision

07.08.2015

Nervenzellsignale können von einzelnen Kontakten moduliert und blockiert werden

Informationen werden in unserem Gehirn über Billionen von Synapsen von einer Zelle zur nächsten weitergegeben. Für einen optimalen Datenfluss ist jedoch nicht nur die Übertragung von Informationen wichtig, sondern auch ihre gezielte Hemmung.


Hemmende Nervenzellen (grün) können über einzelne Synapsen die Signalverarbeitung in Zellen der Großhirnrinde (rot) modulieren oder blockieren.

© MPI für Neurobiologie / Müllner

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried konnten nun in Mäusen zeigen, dass selbst einzelne hemmende Synapsen die Signalverarbeitung maßgeblich beeinflussen können. Die Studie ergänzt ein wichtiges Puzzleteil zum Verständnis dieser grundlegenden Gehirnfunktion, die auch bei manchen Krankheiten eine Rolle spielt.

Das menschliche Gehirn besteht aus rund 100 Milliarden Nervenzellen. Jede dieser Zellen ist über mehrere hundert bis tausend Synapsen mit anderen Zellen verbunden. Unser Denken, Handeln und Fühlen, aber auch unsere Organ- und Körperfunktionen werden durch die synaptische Informationsweitergabe gesteuert – in jeder Sekunde sind es viele Billiarden Impulse.

Damit dieser enorme Datenstrom in geregelten Bahnen läuft, gibt es erregende Synapsen, die Informationen zwischen Zellen weitergeben, und hemmende Synapsen, die den Informationsfluss eingrenzen und verändern.

Wie wichtig auch das Unterdrücken unerwünschter Signale ist, zeigt sich unter anderem, wenn die Funktion der hemmenden Synapsen gestört ist: Es kommt zu einer überhöhten Erregung im Gehirn, wie sie zum Beispiel bei Epilepsie zu sehen ist. Doch auch um zu lernen, oder sich zu erinnern, braucht das Gehirn Nervenzellen, die die Aktivität anderer Nervenzellen regulieren.

Die meisten dieser hemmenden Synapsen docken an die Empfangseinheit der Zielzelle an, die Dendriten. Welche Wirkung diese hemmenden Synapsen jedoch genau haben und wie präzise sie agieren, war bislang nicht erforscht.

Wissenschaftler des Max-Planck-Instituts für Neurobiologie konnten nun in Mäusen zeigen, dass selbst einzelne hemmende Synapsen die Signalverarbeitung in den Dendriten anderer Zellen entscheidend beeinflussen. Die Neurobiologen untersuchten den Einfluss der dendritischen Hemmung auf Nervenzellen im Hippocampus, einem Gehirnbereich, in dem unter anderem Kurzzeit- in Langzeiterinnerungen umgewandelt werden.

Mit einer fein abgestimmten Kombination verschiedener Methoden konnten die Forscher durch das Mikroskop beobachten, wie schon einzelne hemmende Synapsen die Stärke und Ausbreitung eines Signals in der gehemmten Nervenzelle erheblich veränderten. Die Ergebnisse zeigen, dass Nervenzellsignale durch hemmende Synapsen mit einer Präzision von wenigen Millisekunden und Mikrometern in ihrer Amplitude reguliert werden können.

Es war bekannt, dass hemmende Nervenzellen eine sehr grundlegende Funktion im Gehirn erfüllen. "Dass aber bereits einzelne hemmende Synapsen eine wichtige Rolle spielen und eine so präzise Wirkung haben, hat uns richtig fasziniert", erklärt Fiona Müllner, die Erstautorin der gerade erschienenen Studie.

 Aufbauend auf ihre Ergebnisse konnten die Wissenschaftler mit Hilfe eines Modells zeigen, wie einzelne hemmende Synapsen sogar die synaptische Plastizität, die Grundlage für Lernen und Gedächtnis, kontrollieren könnten. "Uns interessiert jetzt natürlich ganz besonders, welche Einflüsse eine so präzise Hemmung auf die Speicherung von Information im Nervensystem hat ", fügt Tobias Bonhoeffer hinzu, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie die Grundlagen der synaptischen Plastizität untersucht.

Prof. Dr. Tobias Bonhoeffer | Max-Planck-Institut für Neurobiologie, Martinsried
Weitere Informationen:
http://www.mpg.de/9349088/synapsen-signale-gehirn

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie