Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Goldene Falle: Hochempfindliches System kann einzelne Moleküle nachweisen

16.12.2013
Die medizinische Diagnostik fahndet nach Substanzen, die frühzeitig anzeigen, ob eine bedrohliche Krankheit entsteht oder wie sie verläuft. Oft sind die verräterischen Moleküle nur in winzigen Mengen vorhanden.

Deshalb braucht man extrem sensitive Nachweisverfahren. Forscher vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) haben nun gemeinsam mit Wissenschaftlern aus Potsdam und Berlin eine Nachweismethode entwickelt, mit der sie eine Gesamtzahl von gerade einmal 17 Farbstoff-Molekülen nachgewiesen haben. Diese hochempfindliche Methode könnte einmal dazu genutzt werden, um einen winzigen Bluttropfen auf drohende Erkrankungen zu untersuchen.


DNA-Dreiecke im Rasterkraftmikroskop. Die hell leuchtenden Punkte sind Goldpartikel, die paarweise angeordnet sind. In der Lücke zwischen ihnen lassen sich einzelne Moleküle einfangen und nachweisen. HZDR

Die hohe Empfindlichkeit der Nachweis-Methode beruht auf einer maßgeschneiderten Umgebung für die nachzuweisende Substanz. Der Dresdner Adrian Keller und seine Kollegen haben eine Art goldene Falle konstruiert, die Moleküle einfangen kann und damit deren Nachweis ermöglicht. Zwei winzige Goldpartikel wurden in genau definiertem Abstand zueinander auf einer Unterlage angeordnet. In der Lücke dazwischen verankerten die Wissenschaftler Moleküle eines als TAMRA bezeichneten Farbstoffs.

Dann bestrahlten sie die Probe mit Laserlicht, um ein Raman-Spektrum zu erhalten. Bei diesem optischen Verfahren wird das Laserlicht an dem Molekül gestreut und man erhält ein für die betreffende Substanz spezifisches Spektrum. Normalerweise ist die Raman-Spektroskopie ein wenig sensitives Verfahren und man benötigt eine große Anzahl an Molekülen für einen Nachweis. Befinden sich die Moleküle jedoch in der Nähe von metallischen Oberflächen, tritt ein erstaunlicher Effekt auf: Das Raman-Signal wird extrem verstärkt.

Diesen Effekt konnten die HZDR-Forscher bei ihrer Probe beobachten. HZDR-Forscher Adrian Keller erläutert: „Zwischen den Goldkugeln besteht ein elektrisches Feld. Wählt man die richtigen Abmessungen, kommt es zu einer Feldverstärkung zwischen den Partikeln und wir erhalten sogenannte hot spots.“ Das elektrische Feld regt dann zusammen mit dem einfallenden Laserlicht die Moleküle an. So kommt es zur verstärkten Raman-Streuung. Sind also Moleküle in diesen hot spots gebunden, kann man ihre charakteristischen Signale im Spektrum besonders gut erkennen.

Für die Konstruktion ihrer goldenen Falle wählten die Wissenschaftler die Erbsubstanz DNA. Denn die fadenförmigen Stränge lassen sich mit Hilfe vieler kurzer DNA-Abschnitte zu beliebig dimensionierten Objekten falten. Diese auch als DNA-Origami bezeichnete Technik beruht auf der Bindung zwischen komplementären Basen – die DNA-Stränge haken sich wie die beiden Seiten eines Reißverschlusses ineinander. Auf diese Weise haben Adrian Keller und seine Kollegen Dreiecke aus DNA erschaffen, deren Kantenlänge etwa 100 Nanometer beträgt. Aus einem solchen Dreieck ragen zwei exakt platzierte Anker hervor, an denen zwei Gold-Nanopartikel in genau definiertem Abstand gebunden werden.

In einem ersten Versuch überzogen die Forscher die winzigen Goldkugeln mit einer Art DNA-Pelz, der auch Farbstoff-Moleküle enthielt. Dann fertigten sie ein Raman-Spektrum von der Probe an und erkannten, dass die TAMRA-Moleküle sehr gut nachweisbar sind. Da der Pelz auf den Gold-Nanopartikeln sehr dicht ist, schätzen Adrian Keller und seine Kollegen, dass 100 – 1000 Moleküle TAMRA zu dem erhaltenen Signal beitragen. In Kontrollversuchen bestrahlten die Forscher die pelzigen Goldkugeln mit Laserlicht, ohne sie auf dem DNA-Dreieck anzuordnen. Hier zeigte sich im Spektrum nur ein sehr schwaches Signal.

Doch die Methode ist noch weitaus empfindlicher. In weiteren Experimenten brachten die Forscher ein Paar nackter Gold-Nanopartikel auf einem DNA-Dreieck auf und verknüpften drei einzelne Farbstoff-Moleküle über zusätzliche an der DNA lokalisierte Anker direkt innerhalb des hot spots. Auch in diesen Raman-Spektren ist das Signal des Farbstoffs gut zu erkennen. Als optimale Größe der Gold-Kügelchen ermittelten die Forscher 25 Nanometer. Dann war der Verstärkungseffekt besonders groß.

Schließlich bugsierten Adrian Keller und seine Kollegen nur noch ein einziges Farbstoff-Molekül in die Lücke zwischen den beiden Gold-Teilchen. Selbst diese verschwindend winzige Menge an TAMRA ließ sich noch nachweisen. Die Oberfläche, die mit dem Laserstrahl erfasst wurde, enthielt 17 DNA-Dreiecke. Das Signal stammt also von 17 einzelnen Molekülen.

„Wir haben gezeigt, dass man mit der Methode im Prinzip Einzelmoleküle detektieren kann“, sagt Adrian Keller. Nun wollen die Forscher den Aufbau weiter variieren. In der Lücke zwischen den Gold-Partikeln soll beispielsweise ein Anker fixiert werden, der ein nachzuweisendes Molekül – beispielsweise ein Protein – binden kann. Jegliche Art von Biomolekülen könnte auf diese Weise analysiert werden, ob DNA, RNA oder Eiweißstoffe. Und weil jede Molekülsorte charakteristische Raman-Signale erzeugt, kann man mit entsprechend präparierten DNA-Dreiecken sogar auf mehrere Substanzen gleichzeitig testen. In Zukunft könnte das Nachweis-Prinzip auch auf einem Chip integriert werden und in der medizinischen Diagnostik Verwendung finden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de/presse/goldene_falle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden neue Ansätze gegen Wirkstoffresistenzen in der Tumortherapie
15.12.2017 | Universität Leipzig

nachricht Moos verdoppelte mehrmals sein Genom
15.12.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik