Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Goldene Falle: Hochempfindliches System kann einzelne Moleküle nachweisen

16.12.2013
Die medizinische Diagnostik fahndet nach Substanzen, die frühzeitig anzeigen, ob eine bedrohliche Krankheit entsteht oder wie sie verläuft. Oft sind die verräterischen Moleküle nur in winzigen Mengen vorhanden.

Deshalb braucht man extrem sensitive Nachweisverfahren. Forscher vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) haben nun gemeinsam mit Wissenschaftlern aus Potsdam und Berlin eine Nachweismethode entwickelt, mit der sie eine Gesamtzahl von gerade einmal 17 Farbstoff-Molekülen nachgewiesen haben. Diese hochempfindliche Methode könnte einmal dazu genutzt werden, um einen winzigen Bluttropfen auf drohende Erkrankungen zu untersuchen.


DNA-Dreiecke im Rasterkraftmikroskop. Die hell leuchtenden Punkte sind Goldpartikel, die paarweise angeordnet sind. In der Lücke zwischen ihnen lassen sich einzelne Moleküle einfangen und nachweisen. HZDR

Die hohe Empfindlichkeit der Nachweis-Methode beruht auf einer maßgeschneiderten Umgebung für die nachzuweisende Substanz. Der Dresdner Adrian Keller und seine Kollegen haben eine Art goldene Falle konstruiert, die Moleküle einfangen kann und damit deren Nachweis ermöglicht. Zwei winzige Goldpartikel wurden in genau definiertem Abstand zueinander auf einer Unterlage angeordnet. In der Lücke dazwischen verankerten die Wissenschaftler Moleküle eines als TAMRA bezeichneten Farbstoffs.

Dann bestrahlten sie die Probe mit Laserlicht, um ein Raman-Spektrum zu erhalten. Bei diesem optischen Verfahren wird das Laserlicht an dem Molekül gestreut und man erhält ein für die betreffende Substanz spezifisches Spektrum. Normalerweise ist die Raman-Spektroskopie ein wenig sensitives Verfahren und man benötigt eine große Anzahl an Molekülen für einen Nachweis. Befinden sich die Moleküle jedoch in der Nähe von metallischen Oberflächen, tritt ein erstaunlicher Effekt auf: Das Raman-Signal wird extrem verstärkt.

Diesen Effekt konnten die HZDR-Forscher bei ihrer Probe beobachten. HZDR-Forscher Adrian Keller erläutert: „Zwischen den Goldkugeln besteht ein elektrisches Feld. Wählt man die richtigen Abmessungen, kommt es zu einer Feldverstärkung zwischen den Partikeln und wir erhalten sogenannte hot spots.“ Das elektrische Feld regt dann zusammen mit dem einfallenden Laserlicht die Moleküle an. So kommt es zur verstärkten Raman-Streuung. Sind also Moleküle in diesen hot spots gebunden, kann man ihre charakteristischen Signale im Spektrum besonders gut erkennen.

Für die Konstruktion ihrer goldenen Falle wählten die Wissenschaftler die Erbsubstanz DNA. Denn die fadenförmigen Stränge lassen sich mit Hilfe vieler kurzer DNA-Abschnitte zu beliebig dimensionierten Objekten falten. Diese auch als DNA-Origami bezeichnete Technik beruht auf der Bindung zwischen komplementären Basen – die DNA-Stränge haken sich wie die beiden Seiten eines Reißverschlusses ineinander. Auf diese Weise haben Adrian Keller und seine Kollegen Dreiecke aus DNA erschaffen, deren Kantenlänge etwa 100 Nanometer beträgt. Aus einem solchen Dreieck ragen zwei exakt platzierte Anker hervor, an denen zwei Gold-Nanopartikel in genau definiertem Abstand gebunden werden.

In einem ersten Versuch überzogen die Forscher die winzigen Goldkugeln mit einer Art DNA-Pelz, der auch Farbstoff-Moleküle enthielt. Dann fertigten sie ein Raman-Spektrum von der Probe an und erkannten, dass die TAMRA-Moleküle sehr gut nachweisbar sind. Da der Pelz auf den Gold-Nanopartikeln sehr dicht ist, schätzen Adrian Keller und seine Kollegen, dass 100 – 1000 Moleküle TAMRA zu dem erhaltenen Signal beitragen. In Kontrollversuchen bestrahlten die Forscher die pelzigen Goldkugeln mit Laserlicht, ohne sie auf dem DNA-Dreieck anzuordnen. Hier zeigte sich im Spektrum nur ein sehr schwaches Signal.

Doch die Methode ist noch weitaus empfindlicher. In weiteren Experimenten brachten die Forscher ein Paar nackter Gold-Nanopartikel auf einem DNA-Dreieck auf und verknüpften drei einzelne Farbstoff-Moleküle über zusätzliche an der DNA lokalisierte Anker direkt innerhalb des hot spots. Auch in diesen Raman-Spektren ist das Signal des Farbstoffs gut zu erkennen. Als optimale Größe der Gold-Kügelchen ermittelten die Forscher 25 Nanometer. Dann war der Verstärkungseffekt besonders groß.

Schließlich bugsierten Adrian Keller und seine Kollegen nur noch ein einziges Farbstoff-Molekül in die Lücke zwischen den beiden Gold-Teilchen. Selbst diese verschwindend winzige Menge an TAMRA ließ sich noch nachweisen. Die Oberfläche, die mit dem Laserstrahl erfasst wurde, enthielt 17 DNA-Dreiecke. Das Signal stammt also von 17 einzelnen Molekülen.

„Wir haben gezeigt, dass man mit der Methode im Prinzip Einzelmoleküle detektieren kann“, sagt Adrian Keller. Nun wollen die Forscher den Aufbau weiter variieren. In der Lücke zwischen den Gold-Partikeln soll beispielsweise ein Anker fixiert werden, der ein nachzuweisendes Molekül – beispielsweise ein Protein – binden kann. Jegliche Art von Biomolekülen könnte auf diese Weise analysiert werden, ob DNA, RNA oder Eiweißstoffe. Und weil jede Molekülsorte charakteristische Raman-Signale erzeugt, kann man mit entsprechend präparierten DNA-Dreiecken sogar auf mehrere Substanzen gleichzeitig testen. In Zukunft könnte das Nachweis-Prinzip auch auf einem Chip integriert werden und in der medizinischen Diagnostik Verwendung finden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de/presse/goldene_falle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzen gegen Staunässe schützen
17.10.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Erweiterung des Lichtwegs macht winzige Strukturen in Körperzellen sichtbar
17.10.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz