Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Göttinger Neurobiologen identifizieren Ionenkanal für hochempfindliches Hören

13.04.2011
Den Schallwandlern im Ohr auf der Spur

Wenn Schallwellen auf eine Sinneszelle im Ohr treffen, werden sie dort in elektrische Nervensignale umgewandelt. Wissenschaftler der Universität Göttingen haben nun herausgefunden, dass ein bestimmter Ionenkanal im Ohr der Fruchtfliege Drosophila offenbar speziell für die Schallwandlung in den empfindlichsten Sinneszellen verantwortlich ist. Das bedeutet, dass er das Vermögen der Fliege steuert, besonders leise Geräusche hören zu können.


Aufnahme mit einem konfokalen Mikroskop: Rezeptoren im Fliegenohr (grün), überlagert sind Antworten der Rezeptoren auf Schall (rot bis gelb). Foto: Uni Göttingen

Gleichzeitig konnten die Forscher der Abteilung Zelluläre Neurobiologie nun erstmals nachweisen, dass es in Ohren nicht nur einen, sondern mehrere verschiedene Schallwandler gibt. Die Studien fanden unter der Leitung von Prof. Dr. Martin Göpfert im Rahmen des Sonderforschungsbereichs „Zelluläre Mechanismen sensorischer Signalverarbeitung“ der Universität Göttingen sowie am Bernstein Center for Computational Neuroscience Göttingen statt. Die Ergebnisse wurden jetzt in der Fachzeitschrift Current Biology veröffentlicht.

Seit Jahren suchen Wissenschaftler Ionenkanäle, deren Verlust komplette Taubheit verursacht – ohne diese Schallwandler können Ohren schließlich keine Nervensignale mehr produzieren. Doch trotz zahlreicher Studien an den Ohren von Fruchtfliegen, Mäusen, Ratten und Menschen konnte bislang keiner diese Ionenkanäle genau identifiziert werden. Die Göttinger Forscher entfernten bei ihren Experimenten den bereits bekannten Ionenkanal NompC aus dem Ohr der Fliege. Dabei fanden sie heraus, dass die Fliege auch ohne den Ionenkanal hören kann, ihre Hörempfindlichkeit jedoch stark vermindert ist. Nur wenn die Tiere sehr laut beschallt wurden, leiteten ihre Ohren Nervensignale weiter. Die Fähigkeit der Fliegen, auch leisen Schall zu hören, konnten die Wissenschaftler auf eine bestimmte Gruppe empfindlicher Sinneszellen im Ohr einschränken. Es stellte sich heraus, dass genau diese Gruppe den Kanal NompC für die Schallwandlung braucht.

Den Kanal NompC gibt es zwar auch in den umliegenden Sinneszellen, die Schallwandlung muss dort aber auf einem anderen Ionenkanal beruhen, denn der Verlust des NompC-Kanals stört die Schallwandlung in diesen weniger empfindlichen Sinneszellen nicht. Für die Wissenschaftler bedeutet die Entdeckung, dass sie ihren Forschungsansatz ändern müssen: „Würden wir die Suche weiterhin auf Ionenkanäle beschränken, deren Verlust komplette Taubheit bewirkt, dann würden wir die Schallwandler im Ohr vermutlich nie finden“, so Thomas Effertz, der Erstautor der Studie.

Originalveröffentlichung: Thomas Effertz, Robert Wiek, Martin Göpfert. NompC TRP Channel Is Essential for Drosophila Sound Receptor Function. Current Biology (2011). Doi: 10.1016/j.cub.2011.02.048

Kontaktadresse:
Prof. Dr. Martin Göpfert
Georg-August-Universität Göttingen
Biologische Fakultät
Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie
Abteilung Zelluläre Neurobiologie
c/o Max-Planck-Institut für experimentelle Medizin
Hermann-Rein-Straße 3, 37073 Göttingen
Telefon (0551) 3899-437, Fax (0551) 3899-439
E-Mail: mgoepfe@gwdg.de

Dr. Bernd Ebeling | Uni Göttingen
Weitere Informationen:
http://www.uni-goettingen.de/de/114662.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie