Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gleise aus Rhodopsin

02.03.2015

Sehfarbstoff ordnet sich in Doppelreihen an

Wissenschaftler des Bonner Forschungszentrums caesar, einem Institut der Max-Planck-Gesellschaft, haben mithilfe der Elektronenmikroskopie aufgeklärt, wie der Sehfarbstoff Rhodopsin in den Stäbchen der Netzhaut angeordnet ist. In der Wissenschaft wurde diese Frage viele Jahre lang kontrovers diskutiert. Dank der Erkenntnisse könnten Krankheiten, die Blindheit verursachen, in der Zukunft besser erforscht werden.


Ausschnitt aus einem Sehstäbchen einer Maus mit mehreren Stapeln der sogenannten Disks aus dem Außensegment des Sehstäbchens. In den Membranen der Disks befindet sich das Sehpigment Rhodopsin in Form von Dimeren. Die Rhodopsin-Dimere selbst bilden paarweise Reihen, an die das G-Protein Transducin (grün) gekoppelt ist. Die Rhodopsin-Reihen verlaufen parallel zur schlitzförmigen Einschnürung in den Disks.

© caesar

Das Sehen beginnt in den Stäbchen und Zapfen, zwei unterschiedlichen Sinneszellen in der Netzhaut unserer Augen. Die Stäbchen sind für das Dämmerungssehen verantwortlich und deshalb besonders lichtempfindlich. Einzelne Lichtquanten, Photonen, aktivieren den Sehfarbstoff Rhodopsin und leiten dadurch den Sehprozess ein. Das Rhodopsin befindet sich in flachen Membranscheibchen (Disks) der Sehzellen.

Die biochemischen Prozesse, die dem Sehen zugrunde liegen, sind seit vielen Jahren bekannt: Rhodopsin löst eine hochverstärkte Kaskade enzymatischer Reaktionen aus, die zu einer elektrischen Erregung führen. Unklar war bisher jedoch, wie das Rhodopsin in den Disks angeordnet ist. Zum Beispiel wurde diskutiert, ob das Rhodopsin paarweise als Dimer vorliegt oder ob die Rhodopsin-Moleküle frei beweglich auf den Disks „herumirren“ und so ihre Interaktionspartner – ähnlich wie Billardkugeln nach einem wilden Schlag mit dem Queue – zufällig finden.

In Zusammenarbeit mit Ashraf Al-Amoudi vom Deutschen Zentrum für Neurodegenerative Erkrankungen (DZNE) nutzten die caesar-Forscher die Kryo-Elektronenmikroskopie, um die Anordnung des Rhodopsins in den Stäbchen von Mäusen zu untersuchen. Bei dieser Methode werden die Proben zunächst schockgefroren. Dadurch bleibt die natürliche Struktur weitgehend erhalten. Die eigentliche Untersuchung findet in einem Transmissionselektronenmikroskop statt, das die nötige Auflösung besitzt, um einzelne Moleküle sichtbar zu machen.

Die Wissenschaftler um Benjamin Kaupp und Ashraf Al-Amoudi konnten zeigen, dass die Rhodopsinmoleküle als Dimer vorliegen. Darüber hinaus bildet das Rhodopsin sogenannte supramolekulare Strukturen: Die Dimere sind in Reihen aus circa 50 Molekülen angeordnet. Je zwei Reihen lagern sich zu einer Doppelreihe zusammen – wie Bahngleise. Alle Reihen sind parallel angeordnet.

Welche physiologische Funktion eine solche regelmäßige Anordnung hat, ist derzeit unklar. Möglicherweise bilden die Doppelreihen eine Plattform, auf der die anderen Moleküle, die an der elektrischen Signalwandlung teilnehmen, regelmäßig angeordnet sind. Durch die parallele Anordnung der Reihen könnte sich das Polarisationssehen erklären lassen, mit dem sich einige Wirbeltiere – etwa Amphibien und Vögel – in ihrer Umgebung orientieren. Im Gegensatz zum Polarisationssehen von Insekten sind die entsprechenden Mechanismen bei Wirbeltieren noch nicht gut verstanden. Bislang ist umstritten, ob auch Säugetiere diese Fähigkeit besitzen. Die Ergebnisse am Mausmodell werden weiterführende Untersuchungen stimulieren.


Ansprechpartner

Prof. Dr. Ulrich Benjamin Kaupp
Assoziierte Einrichtung - Forschungszentrum caesar (center of advanced european studies and research), Bonn
Telefon: +49 228 9656-100
Fax: +49 228 9656-111
E-Mail: u.b.kaupp@caesar.de

Stefan Hartmann
Assoziierte Einrichtung - Forschungszentrum caesar (center of advanced european studies and research), Bonn
Telefon: +49 228 9656-292
Fax: +49 228 9656-9292
E-Mail: stefan.hartmann@caesar.de

Originalpublikation

Gunkel, M., Schöneberg, J., Alkhaldi, W., Irsen, S., Noé, F., Kaupp, U.B. & Al-Amoudi, A.

Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics

Structure, (doi: http://dx.doi.org/10.1016/j.str.2015.01.015

Prof. Dr. Ulrich Benjamin Kaupp | Max-Planck-Gesellschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften