Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gießener Forscher beobachten unerwartete Probleme bei Membranen für Hybrid-Batterien

15.03.2016

Bildung einer Zwischenschicht zwischen flüssigen und festen Elektrolyten behindert Ionentransfer – Publikation in „Nature Chemistry“

Als Folge der Energiewende forschen Wissenschaftlerinnen und Wissenschaftler weltweit an leistungsfähigeren Batterien – etwa für den Antrieb von Autos oder für die Zwischenspeicherung von alternativen Energien. Im Fokus stehen dabei unter anderem neuartige hybride Batteriekonzepte, bei denen flüssige Elektrolyte mit Festkörper-Membranen kombiniert werden.


Schematische Darstellung der Passivierungsschicht „solid-/liquid electrolyte interphase“ (kurz „SLEI“).

Grafik: Busche et al. / Nature Chemistry

Ein Forscherteam um Prof. Dr. Jürgen Janek vom Physikalisch-Chemischen Institut der Justus-Liebig-Universität Gießen (JLU) in Zusammenarbeit mit den Firmen BASF SE und Schott AG berichtet nun in der Fachzeitschrift „Nature Chemistry“ von überraschenden Beobachtungen, die erheblichen Einfluss auf die Leistungsfähigkeit einer hybriden Batterie hätten. Demnach bildet sich sich an den Grenzflächen von Festelektrolyt-Membranen und flüssigen Elektrolyten eine sogenannte Passivierungsschicht, die den Ionentransfer behindert.

Das grundlegende Bauprinzip von Batterien ist unabhängig von der speziellen „Zellchemie“ immer gleich: Jede Batterie besteht aus zwei Elektroden, die durch einen rein ionenleitenden Elektrolyten getrennt sind. In den heute marktführenden und bereits jetzt sehr leistungsfähigen Lithium-Ionen-Batterien ist der Elektrolyt meist flüssig und besteht aus organischen Lösungsmitteln und einem lithiumhaltigen Leitsalz. Dieser flüssige Elektrolyt ermöglicht zwar die Funktion der Batterie, er stellt aber oft auch ihre „Achillesferse“ dar.

Beim Laden und Entladen einer Batterie können sich Bestandteile der Elektroden im Elektrolyten lösen und zur ungewollten chemischen Wechselwirkung von Anode und Kathode führen. Dies spielt besonders bei der praktischen Umsetzung gänzlich neuer Batteriekonzepte, wie zum Beispiel der Lithium-Schwefel- oder Lithium-Sauerstoff-Batterie ein bisher nur unzureichend gelöstes Problem dar. Aber auch in Lithium-Ionen-Batterien nächster Generationen können derartige chemische „Kurzschlüsse“ zu Stabilitätsproblemen führen.

Daher werden heute hybride Batteriekonzepte, in denen rein ionenleitende Festkörpermembranen als Diffusionssperre mit Flüssigelektrolyten kombiniert werden, als möglicher Lösungsweg erforscht. Wie die Autoren, zu denen auch Martin Busche, Thomas Drossel, Dr. Thomas Leichtweiß, Dr. Dominik Weber und Prof. Dr. Philipp Adelhelm gehören, beobachteten, bilden die untersuchten Festelektrolyte im Kontakt mit dem flüssigen Elektrolyt eine Art Passivierungsschicht aus.

Durch die Kombination aufwändiger physikalisch-chemischer Analysemethoden konnten sowohl der elektrische Widerstand dieser Schicht ermittelt als auch ihre chemischen Bestandteile identifiziert werden.

Diese zeigen Ähnlichkeit zur bekannten „SEI“ („solid electrolyte interphase“), wie sie auf Anoden in konventionellen Lithium-Ionen-Batterien entsteht und diese überhaupt nutzbar macht. Die von den Autoren als „solid-/liquid electrolyte interphase“ – kurz „SLEI“ – bezeichnete Passivierungsschicht ist wegen ihres elektrischen Widerstands nachteilig und hätte einen erheblichen Einfluss auf die Leistungsfähigkeit einer hybriden Batterie.

Die von der Gießener Forschergruppe vorgestellten Ergebnisse sind Teil einer aktuellen Richtung der Batterieforschung: Durch den teilweisen oder vollständigen Ersatz flüssiger Elektrolyte durch feste Elektrolyte sollen Stabilitätsprobleme neuer Zelltypen gelöst werden oder auch reine Festkörperbatterien mit großer Haltbarkeit entwickelt werden.

Die Forschergruppe um Prof. Janek untersucht gemeinsam mit Partnern am Karlsruher Institut für Technologie (KIT) und der Industrie systematisch die bei der Umsetzung von Festelektrolyttechnologien auftretenden Probleme. Hierzu gehören Transportprozesse von (Lithium-)Ionen in Festkörpern und in besonderem Maße Transferprozesse an Grenzflächen.

Die Ergebnisse der publizierten Arbeit wurden im Rahmen des internationalen Forschungsnetzwerks der BASF SE für Elektrochemie und Batterien erarbeitet. In diesem Netzwerk erforschen weltweit acht Arbeitsgruppen in Deutschland, Israel, Kanada, der Schweiz und den USA gemeinsam mit der BASF SE neue Materialien und Zellkonzepte für leistungsfähige elektrochemische Energiespeicher. Prof. Dr. Philipp Adelhelm wurde mittlerweile auf die Professur für Kohlenstoffnanomaterialien an der Universität Jena berufen, Martin Busche ist seit Ende 2015 in der Batterieentwicklung der Robert Bosch GmbH tätig.

Veröffentlichung:
Martin R. Busche, Thomas Drossel, Thomas Leichtweiss, Dominik A. Weber, Mareike Falk, Meike Schneider, Maria-Louisa Reich, Heino Sommer, Philipp Adelhelm and Jürgen Janek:
Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts, Nature Chemistry, DOI: 10.1038/nchem.2470

Kontakt:
Prof. Dr. Jürgen Janek, Physikalisch-Chemisches Institut
Heinrich-Buff-Ring 17, 35392 Gießen
Telefon: 0641 99-34500

Weitere Informationen:

http://www.nature.com/nmat/index.html
http://www.uni-giessen.de/cms/fbz/fb08/Inst/physchem/janek

Lisa Dittrich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht CHP1-Mutation verursacht zerebelläre Ataxie
23.01.2018 | Uniklinik Köln

nachricht Lebensrettende Mikrobläschen
23.01.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics