Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gießener Forscher beobachten unerwartete Probleme bei Membranen für Hybrid-Batterien

15.03.2016

Bildung einer Zwischenschicht zwischen flüssigen und festen Elektrolyten behindert Ionentransfer – Publikation in „Nature Chemistry“

Als Folge der Energiewende forschen Wissenschaftlerinnen und Wissenschaftler weltweit an leistungsfähigeren Batterien – etwa für den Antrieb von Autos oder für die Zwischenspeicherung von alternativen Energien. Im Fokus stehen dabei unter anderem neuartige hybride Batteriekonzepte, bei denen flüssige Elektrolyte mit Festkörper-Membranen kombiniert werden.


Schematische Darstellung der Passivierungsschicht „solid-/liquid electrolyte interphase“ (kurz „SLEI“).

Grafik: Busche et al. / Nature Chemistry

Ein Forscherteam um Prof. Dr. Jürgen Janek vom Physikalisch-Chemischen Institut der Justus-Liebig-Universität Gießen (JLU) in Zusammenarbeit mit den Firmen BASF SE und Schott AG berichtet nun in der Fachzeitschrift „Nature Chemistry“ von überraschenden Beobachtungen, die erheblichen Einfluss auf die Leistungsfähigkeit einer hybriden Batterie hätten. Demnach bildet sich sich an den Grenzflächen von Festelektrolyt-Membranen und flüssigen Elektrolyten eine sogenannte Passivierungsschicht, die den Ionentransfer behindert.

Das grundlegende Bauprinzip von Batterien ist unabhängig von der speziellen „Zellchemie“ immer gleich: Jede Batterie besteht aus zwei Elektroden, die durch einen rein ionenleitenden Elektrolyten getrennt sind. In den heute marktführenden und bereits jetzt sehr leistungsfähigen Lithium-Ionen-Batterien ist der Elektrolyt meist flüssig und besteht aus organischen Lösungsmitteln und einem lithiumhaltigen Leitsalz. Dieser flüssige Elektrolyt ermöglicht zwar die Funktion der Batterie, er stellt aber oft auch ihre „Achillesferse“ dar.

Beim Laden und Entladen einer Batterie können sich Bestandteile der Elektroden im Elektrolyten lösen und zur ungewollten chemischen Wechselwirkung von Anode und Kathode führen. Dies spielt besonders bei der praktischen Umsetzung gänzlich neuer Batteriekonzepte, wie zum Beispiel der Lithium-Schwefel- oder Lithium-Sauerstoff-Batterie ein bisher nur unzureichend gelöstes Problem dar. Aber auch in Lithium-Ionen-Batterien nächster Generationen können derartige chemische „Kurzschlüsse“ zu Stabilitätsproblemen führen.

Daher werden heute hybride Batteriekonzepte, in denen rein ionenleitende Festkörpermembranen als Diffusionssperre mit Flüssigelektrolyten kombiniert werden, als möglicher Lösungsweg erforscht. Wie die Autoren, zu denen auch Martin Busche, Thomas Drossel, Dr. Thomas Leichtweiß, Dr. Dominik Weber und Prof. Dr. Philipp Adelhelm gehören, beobachteten, bilden die untersuchten Festelektrolyte im Kontakt mit dem flüssigen Elektrolyt eine Art Passivierungsschicht aus.

Durch die Kombination aufwändiger physikalisch-chemischer Analysemethoden konnten sowohl der elektrische Widerstand dieser Schicht ermittelt als auch ihre chemischen Bestandteile identifiziert werden.

Diese zeigen Ähnlichkeit zur bekannten „SEI“ („solid electrolyte interphase“), wie sie auf Anoden in konventionellen Lithium-Ionen-Batterien entsteht und diese überhaupt nutzbar macht. Die von den Autoren als „solid-/liquid electrolyte interphase“ – kurz „SLEI“ – bezeichnete Passivierungsschicht ist wegen ihres elektrischen Widerstands nachteilig und hätte einen erheblichen Einfluss auf die Leistungsfähigkeit einer hybriden Batterie.

Die von der Gießener Forschergruppe vorgestellten Ergebnisse sind Teil einer aktuellen Richtung der Batterieforschung: Durch den teilweisen oder vollständigen Ersatz flüssiger Elektrolyte durch feste Elektrolyte sollen Stabilitätsprobleme neuer Zelltypen gelöst werden oder auch reine Festkörperbatterien mit großer Haltbarkeit entwickelt werden.

Die Forschergruppe um Prof. Janek untersucht gemeinsam mit Partnern am Karlsruher Institut für Technologie (KIT) und der Industrie systematisch die bei der Umsetzung von Festelektrolyttechnologien auftretenden Probleme. Hierzu gehören Transportprozesse von (Lithium-)Ionen in Festkörpern und in besonderem Maße Transferprozesse an Grenzflächen.

Die Ergebnisse der publizierten Arbeit wurden im Rahmen des internationalen Forschungsnetzwerks der BASF SE für Elektrochemie und Batterien erarbeitet. In diesem Netzwerk erforschen weltweit acht Arbeitsgruppen in Deutschland, Israel, Kanada, der Schweiz und den USA gemeinsam mit der BASF SE neue Materialien und Zellkonzepte für leistungsfähige elektrochemische Energiespeicher. Prof. Dr. Philipp Adelhelm wurde mittlerweile auf die Professur für Kohlenstoffnanomaterialien an der Universität Jena berufen, Martin Busche ist seit Ende 2015 in der Batterieentwicklung der Robert Bosch GmbH tätig.

Veröffentlichung:
Martin R. Busche, Thomas Drossel, Thomas Leichtweiss, Dominik A. Weber, Mareike Falk, Meike Schneider, Maria-Louisa Reich, Heino Sommer, Philipp Adelhelm and Jürgen Janek:
Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts, Nature Chemistry, DOI: 10.1038/nchem.2470

Kontakt:
Prof. Dr. Jürgen Janek, Physikalisch-Chemisches Institut
Heinrich-Buff-Ring 17, 35392 Gießen
Telefon: 0641 99-34500

Weitere Informationen:

http://www.nature.com/nmat/index.html
http://www.uni-giessen.de/cms/fbz/fb08/Inst/physchem/janek

Lisa Dittrich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics