Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gene flirten auf Distanz

07.04.2009
Geschlossene DNA-Sequenzen erkennen laut einem mathematischen Modell ähnliche Abschnitte in anderen DNA-Doppelsträngen

Gene können nach Ansicht eines Gastwissenschaftlers am Max-Planck-Institut für Mathematik in den Naturwissenschaften schon von Weitem erkennen, ob ein anderes Gen dem eigenen Aufbau entspricht. "Gene verhalten sich wie Gäste auf einer Party", sagt Alexei Kornyshev, Professor für chemische Physik. "Lernen sich dort zwei Menschen kennen, prüfen sie auch erst aus der Distanz, ob sie füreinander interessant sind."


Homologe Sequenzen erkennen sich schon aus gewisser Distanz und ziehen sich an. Bild: Max-Planck-Institut für Mathematik in den Naturwissenschaften

In Leipzig hat Kornyshev nun berechnet, wie weit homologe Abschnitte der DNA, also solche mit sehr ähnlichem Aufbau, voneinander entfernt sein dürfen, um Ähnlichkeiten festzustellen. Homologe Gene tauschen sich etwa aus, wenn Kinder gezeugt werden und sich dabei die Erbinformation der Eltern mischt. "Wüssten wir, wie Gene den richtigen Austauschpartner finden, könnten wir falsche Kombinationen bei künstlicher Befruchtung verhindern", erklärt Kornyshev. (PNAS 2009, Online-Vorabpublikation 9. März 2009, doi:10.1073/pnas.0811208106)

Trotz der Fülle an menschlichen Genen finden sich im Genom ähnliche Exemplare mit hoher Präzision. Das ist wichtig, denn bei der Vererbung ebenso wie bei der Reparatur defekter Gene dürfen nur Teile ausgetauscht werden, die Informationen für dasselbe Merkmal tragen, die also zu zwei Varianten desselben Gens gehören. Auf die Frage, wie die Gene einander erkennen, wissen die Forscher bislang keine Antwort.

Zwei große Theorien gebe es, erläutert Alexei Kornyshev, der am Max-Planck-Institut für Mathematik berechnet hat, wie aneinander vorbei gleitende Doppelstränge der DNA wechselwirken. Die eine Theorie geht davon aus, dass ähnliche Sequenzen sich nur finden, wenn der Doppelstrang sich wie ein Reißverschluss geöffnet hat. Kornyshev gehört dagegen zu den Forschern, die meinen, dass homologe Gene, also solche mit vergleichbarer Zusammensetzung, sich schon aus der Ferne identifizieren und ein Auftrennen der Doppelstränge nicht nötig sei.

Möglich ist das - so sein Modell - weil sich zwischen den negativ geladenen Doppelsträngen der DNA, die sich wie eine Wendeltreppe winden, positiv geladene Teilchen festsetzen, etwa Natrium-, Kalium- oder Magnesiumionen. Die unterschiedlich geladenen Bereiche übten anziehende Kräfte aufeinander aus, wenn zwei Doppelstränge aneinander vorbei glitten, schildert der Wissenschaftler.

Nun hat Kornyshevs Team untersucht, wie weit zwei Doppelstränge gegeneinander verschoben werden dürfen, damit sich die ähnlichen Sequenzen noch erkennen. Dazu betrachteten die Forscher, wie durch ein Fenster einen Abschnitt eines Gens und berechneten, wie sich die Energie ändert, wenn ein zweiter DNA-Doppelstrang vorbei gleitet. Dabei stellten sie fest: Ein Gen merkt, dass sich ein ähnliches nähert, bevor die beiden exakt gegenüber stehen. Es "spürt", dass sich eine energetisch günstigere Position bietet.

Solange die homologen Teile um mehr als die Hälfte der Fensterbreite zueinander versetzt sind, entspricht die Wechselwirkung noch der zwischen verschiedenen Genen. Nähern sich die homologen Doppelstränge weiter an, sinkt die Energie. Sie ist am kleinsten, wenn die beiden Doppelstränge einander exakt gegenüber liegen. Die Kurve, die den Energievorteil beschreibt, sieht aus wie die Kontur eines umgedrehten Sombreros. Sie zeigt: Homologe Sequenzen erkennen sich schon aus gewisser Distanz.

Bereits 2001 hatte ein Team um Kornyshev ein Modell aufgestellt, das beschreibt, wie zwei Doppelstränge aufgrund ihrer negativen Phosphate und der zwischen den Strängen angedockten positiven Ionen miteinander in Wechselwirkung treten. Um zu einer mathematischen Formel zu gelangen, modellierten die Wissenschaftler einen Doppelstrang als zwei zueinander parallele Seile, die sich um eine Litfasssäule winden. Die elektrischen Ladungen bildeten sie ab, indem sie die Seile als negativ, die Zwischenräume als positiv geladen ansahen.

Stehen zwei identisch umwickelte Litfasssäulen nebeneinander, dann liegt das geladene Seil der einen Litfasssäule immer exakt den Zwischenräumen der anderen Litfasssäule gegenüber. Das ist energetisch günstig, weil sich unterschiedliche Ladungen anziehen. Diese Position können nur homologe Doppelstränge einnehmen, denn in der DNA windet sich jede Kombination benachbarter Bausteine in einem bevorzugten Winkel. Übertragen auf die Litfasssäule sind die Seile also nicht gleichmäßig aufgewickelt, sondern an manchen Stellen steiler. Stellt man nun zwei Litfasssäulen nebeneinander, die verschiedene DNA-Sequenzen darstellen, liegen nicht immer positive und negative Ladungen gegenüber. Da gleiche Ladungen sich abstoßen, ist diese Situation energetisch von Nachteil. Mit seinen neuen Rechnungen hat Kornyshev nun gezeigt, wie weit der Energievorteil spürbar ist, wenn zwei homologe DNA-Stränge aneinander vorbei gleiten.

"Es ist klar, dass sich Modell und Realität unterscheiden", sagt Kornyshev, "die DNA ist durchaus komplexer als von uns dargestellt". Dennoch hätten erste Versuche im Reagenzglas gezeigt, dass geschlossene homologe DNA-Sequenzen aus mehreren hundert Bausteinen ohne Hilfe von Proteinen zueinander finden. Es sei daher durchaus möglich, dass sich homologe Gene anhand ihrer Struktur erkennen, bevor der komplexe Prozess starte, in dem sich die Stränge auftrennen und austauschen, erläutert der Wissenschaftler.

Originalveröffentlichung:

Alexei A. Kornyshev und Aaron Wynveen
The homology recognition as well as innate property of DNA structure
PNAS 2009, Online-Vorabpublikation 9. März 2009, doi:10.1073/pnas.0811208106

Dr. Felicitas von Aretin | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie