Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gen für Schizophrenie entdeckt

05.08.2013
Aus unterschiedlichen Blickwinkeln und unabhängig voneinander haben Genetiker aus Finnland und Biochemiker aus Würzburg die molekularen Mechanismen der Schizophrenie und einer kognitiven Leistungsbeeinträchtigung untersucht. Am Ende haben sie festgestellt, dass sich ihre Ergebnisse ideal ergänzen.

Es ist eine makabre Besonderheit, die Finnlands Bevölkerung für Genetiker so interessant macht: Während der Besiedlung des Landes kam es vermutlich mehrmals zu Naturkatastrophen, die unter den Siedlern viele Opfer forderten und ihre Zahl drastisch reduzierte. Das, kombiniert mit der Tatsache, dass sich die einzelnen Siedlerstämme nur wenig untereinander mischten, hat dazu geführt, dass in Finnland heute bestimmte genetische Defekte sehr viel häufiger auftreten als in anderen Ländern Europas.


Stress-induzierte Akkumulation von TOP3b (grün) in cytoplasmatischen, mRNA-haltigen Granula.
Foto: Georg Stoll

Im Norden steigt das Risiko

Auf einer Karte lässt sich diese Besonderheit ohne Mühe erkennen. So steigt beispielsweise die Zahl der Menschen, die eine neurologische Entwicklungsstörung aufweisen, kontinuierlich an, je weiter man sich vom Südwesten des Landes in den Nordosten bewegt. Wer weit im Nordosten aufwächst, hat beispielsweise ein annähernd doppelt so hohes Risiko, unter einer Schizophrenie zu leiden, wie ein Bewohner der Hauptstadt Helsinki. Geringer ist das Risiko in der Region westlich von Helsinki. Gleiches gilt für andere Formen von kognitiven Leistungsstörungen.

Bei der Suche nach den genetischen Grundlagen der Schizophrenie und einer mehr oder weniger stark ausgeprägten kognitiven Leistungsminderung sind Genetiker aus Finnland jetzt fündig geworden: Sie konnten zeigen, dass der Verlust eines Gens auf dem Chromosom 22 das Risiko, eine dieser Krankheiten zu bekommen, in etwa verdoppelt. Bei ihren Untersuchungen der nord-östlichen Bevölkerung Finnlands identifizierten sie einen Defekt im sogenannten TOP3β-Gen, der verantwortlich ist für die fehlerhafte Entwicklung des Gehirns der Betroffenen.

Zwei Arbeitsgruppen, ein Forschungsobjekt

TOP3β: Das ist zufälligerweise genau das Gen, beziehungsweise das Protein, an dem die Wissenschaftler am Lehrstuhl für Biochemie der Universität Würzburg schon seit Langem forschen. Als sie von den Arbeiten der finnischen Genetiker um Aarno Palotie und Nelson Freimer hörten, haben Lehrstuhlinhaber Professor Utz Fischer und seine Mitarbeiter Georg Stoll, Conny Brosi und Bastian Linder deshalb gleich Kontakt nach Helsinki aufgenommen. Wie sich in den folgenden Gesprächen zeigte, ergänzen sich die Projekte beider Gruppen ideal. Über die Ergebnisse berichtet die Fachzeitschrift Nature Neuroscience online vorab.

„Das TOP3β-Protein ist eine Topoisomerase, von der sich die meisten Biochemiker nicht mehr viel Neues erwarten und daher gelangweilt abwinken“, sagt Utz Fischer. Von Topoisomerasen ist bekannt, dass sie für die räumliche Organisation der DNA verantwortlich sind; unbekannte spannende Eigenschaften hat man mit ihnen bisher nicht in Verbindung gebracht. Fischer und seine Arbeitsgruppe beschäftigen sich aus einem anderen Grund mit dem Enzym: „Wir erforschen schon seit einiger Zeit einen Komplex, der aus drei Proteinen besteht, den sogenannte TTF-Komplex“, so Fischer.

Verantwortlich für Autismus und Schizophrenie

Zentrales Element dieses Komplexes ist ein Protein mit dem Namen TDRD3. An dessen Enden angelagert sind das TOP3β- und das FMRP-Protein. Die Kombination hat es in sich: Während ein Defekt am TOP3β-Gen, wie jetzt bekannt ist, das Risiko für eine Schizophrenie erhöht, ist von FMRP schon seit Längerem bekannt, dass es im Zusammenhang mit dem Fragiles-X-Syndrom steht – einer der häufigsten Ursachen für eine erblich bedingte kognitive Störung des Menschen. Die Betroffenen weisen eine mehr oder weniger stark ausgeprägte Verminderung ihrer Intelligenz auf; etliche tragen autistische Züge oder leiden unter epileptischen Anfällen. „Der TTF-Komplex besitzt also zwei Komponenten, deren Fehlen für Symptome sorgt, die auf der Skala für Autismus-Spektrum-Störungen an den entgegengesetzten Enden sitzen“, erklärt Georg Stoll. Defekte am TOP3β-Protein gehen einher mit Schizophrenie; Schäden am FMRP-Protein erhöhen das Risiko für Autismus.

Was im Zellinneren passiert

Die Würzburger Biochemiker interessieren sich für den TTF-Komplex, weil sie an ihm verfolgen können, auf welchen Wegen die Information, die in der DNA im Zellkern gespeichert ist, im Zellplasma in Proteine umgewandelt wird. „Es geht dabei um die prinzipielle Frage, wie in der Zelle ein mRNP aufgebaut wird – also eine Boten-RNA, die mit speziellen Proteinen aufgeladen ist“, erklärt Fischer. Der Aufbau ist nämlich für jedes mRNP einzigartig und bestimmt dessen Regulation beim Umschreiben in Proteine. Am Beispiel des TTF-Komplexes konnte das Team aus der Biochemie zumindest ein paar Details dieses Vorgangs aufdecken.

Demnach bindet das TDRD3-Molekül über eine Protein-Protein-Wechselwirkung an die DNA im Zellkern und sorgt damit für eine Verbindung zwischen dem Chromatin und der Translation – also dem Prozess, bei dem genetische Informationen auf mRNA-Moleküle kopiert und anschließend die jeweiligen Proteine synthetisiert werden. „Diese Verbindung kannte man bislang noch nicht. Er zeigt eine Möglichkeit auf, wie die Zelle spezifisch in das Schicksal der mRNA eingreifen und wie eine Fehlregulation der mRNA Krankheiten verursachen kann“, sagt Fischer.

Der Einfluss auf die Boten-RNA

Auch an die mRNA bindet TDRD3 – wiederum über eine Protein-Protein-Wechselwirkung. Es dockt dafür an den sogenannten Exon-Junction-Komplex an, einen Molekül-Komplex, der beim Verarbeiten, beim Export und bei der Qualitätskontrolle der RNA von Bedeutung ist. Dabei kommen dann auch die weiteren Bestandteile des TTF-Komplexes ins Spiel, das TOP3β- und das FMRP-Protein, was bei einer fehlerhaften Funktion die entsprechenden Krankheitsbilder verursacht.

„Wir vermuten, dass je nachdem, welches Protein fehlt, die mRNA mal hoch-, mal runterreguliert wird“, sagt Georg Stoll. Das sei allerdings bisher nur eine These, die die Wissenschaftler nun in weiteren Experimenten untersuchen wollen. Damit ließe sich jedoch gut erklären, warum in dem einen Fall das eine Extrem einer Autismus-Spektrum-Störung auftritt, im anderen Fall das andere Extrem.

Für die Biochemiker ist das prinzipielle Ergebnis ihrer Arbeit von Bedeutung: „Wir konnten zeigen, dass die Topoisomerase TOP3β nicht nur an der DNA, sondern auch an der RNA aktiv ist“, sagt Fischer. Damit haben die Forscher einen Weg aufgedeckt, wie Proteine über die RNA Einfluss auf das Ablesen der genetischen Information nehmen.

“Deletion of TOP3b, a component of FMRP-containing mRNPs, contributes to neurodevelopmental disorders”. Georg Stoll et al. Nature Neuroscience, online published August 4, 2013. doi:10.1038/nn.3484

Kontakt
Prof. Dr. Utz Fischer, T: (0931) 31-84029, E-Mail: utz.fischer@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie