Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Gen zum Protein – Neue Erkenntnisse von MDC/BIMSB-Forschern

19.05.2011
Wie steuern uns die Gene? Diese fundamentale Frage des Lebens ist trotz jahrzehntelanger Forschung immer noch offen. Gene sind Baupläne für Proteine – den eigentlichen Funktionsträgern des Lebens.

Bei Krankheiten wie Krebs ist nicht nur das Erbgut verändert, sondern es ist auch die Produktion von Proteinen gestört. Doch wie wird kontrolliert, wie viel von welchem Protein gemacht wird? Das haben Forscher vom Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch der Helmholtz-Gemeinschaft jetzt erstmals gemessen. Nach ihren neuesten Erkenntnissen findet die Kontrolle der Proteinproduktion hauptsächlich im Zellplasma statt und nicht im Hochsicherheitstrakt des Zellkerns.

Basis für den Erfolg war die enge Zusammenarbeit eines Teams um die Biologen Björn Schwanhäusser, Matthias Selbach, die Systembiologin Jana Wolf und den Biologen Wei Chen vom Berlin Institute for Medical Systems Biology (BIMSB) des MDC (Nature doi:10.1038/nature10098)*. Das BIMSB wurde 2008 vom MDC mit Unterstützung des Bundesforschungsministeriums und des Senats von Berlin gegründet. Im Mittelpunkt der medizinischen Systembiologie stehen nicht mehr einzelne, isoliert betrachtete Gene und ihre Proteine, sondern ihre Regulation und ihre Wechselwirkungen miteinander, und deren Relevanz für Krankheitsvorgänge. Seit seiner Gründung ist das BIMSB nicht nur in der Berliner Forschungslandschaft renommiert, sondern hat sich auch international einen sehr guten Ruf verschafft. Mit den Berliner Universitäten, vor allem der Humboldt-Universität zu Berlin und der Charité-Universitätsmedizin Berlin, arbeitet das Institut eng in zahlreichen Forschungsverbünden gerade auch im Rahmen der Exzellenzinitiative zusammen. Darüber hinaus kooperiert es eng mit der New York University.

Proteine sind die Bau- und Betriebstoffe des Lebens. „Sie steuern quasi alle biologischen Prozesse vom Herzschlag über den Sauerstofftransport bis hin zum Denken“, erläutert Selbach. Der Bauplan für die Proteine ist in den Genen im Zellkern gespeichert. Die im Zellkern gebildete messenger RNA (mRNA; engl. messenger für Bote) (Transkription) bringt eine Kopie des Bauplans zu den Proteinfabriken der Zelle im Zellplasma, den Ribosomen. Dort wird die Information der mRNAs für die Proteinproduktion übersetzt (Translation). Fraglich war allerdings, welcher der beiden Prozesse, d.h. Transkription oder Translation federführend bei der Kontrolle der zellulären Proteinmengen ist.

Ausgangspunkt der MDC-Forscher war es, den Umsatz von zellulären mRNAs und Proteinen sowie die mRNA- und Proteinmengen zu messen. Zum Einsatz kamen dabei Hochdurchsatztechnologien wie die quantitative Massenspektrometrie und neueste Sequenzierungstechniken, die am MDC/BIMSB in unmittelbarer räumlicher Nähe zu finden sind.

Mit Hilfe mathematischer Modellrechnungen konnten aus den gewonnenen Daten Rückschlüsse auf die Kontrolle der Proteinmengen gewonnen werden. Insgesamt identifizierten die Forscher in den Bindegewebszellen über 5 000 Proteine. Welche Gene tatsächlich in Proteine übersetzt werden, hängt dabei nicht nur von der Umschreibung der DNA-Vorlage in mRNAs im Zellkern ab, sondern insbesondere von der Übersetzung der Vorlage in den Proteinfabriken im Zellplasma. „Die Ribosomen bestimmen letztlich, wie viel Protein eine Zelle herstellt. „Aus manchen mRNAs entsteht nur ein Protein pro Stunde, aus anderen dagegen 200“, erklärt Selbach.

Zellen arbeiten energieeffizient
Die Forscher stellten weiter fest, dass Zellen sehr effizient mit ihren Ressourcen umgehen. Die mRNAs und Proteine, von denen eine Zelle am meisten herstellt, und die sie für ihren normalen Betrieb benötigt, sind sehr stabil. Auf diese Weise spart die Zelle wertvolle Energie, denn die Proteinproduktion verbraucht viele Ressourcen. Dagegen sind Proteine, die für die schnelle Signalverarbeitung wichtig sind, meist instabil. Die Zelle kann deshalb schnell auf Veränderungen reagieren. Das erklärt vielleicht auch, warum die entscheidende Kontrolle erst im Zellplasma abläuft und nicht schon bei den Genen im Zellkern: Die Kontrolle des letzten Schrittes der Produktionskette erlaubt es den Zellen, besonders dynamisch auf Umwelteinflüsse zu reagieren.

Die Forscher hoffen, dass ihre Ergebnisse auch für Krankheiten relevant sind. „Bisher ist das reine Grundlagenforschung“, betont Selbach. „Aber man weiß auch, dass die Produktion von Proteinen zum Beispiel bei Krebs gestört ist.“ Wo der Prozess außer Kontrolle gerät, ist kaum bekannt. Bisher haben Forscher hauptsächlich im Zellkern nach Antworten gesucht. Die neuen Ergebnisse zeigen aber, dass die Proteinfabriken im Zellplasma sehr große Bedeutung haben. Vielleicht liegt also dort der Schlüssel zum Verständnis von Krankheiten.

*Global quantification of mammalian gene expression control
Björn Schwanhäusser1, Dorothea Busse1, Na Li1, Gunnar Dittmar1, Johannes Schuchhardt2, Jana Wolf1, Wei Chen1 & Matthias Selbach1

1Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, D-13092 Berlin, Germany. 2MicroDiscovery GmbH, Marienburger Str. 1, D-10405 Berlin, Germany.

Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Weitere Informationen:
http://www.mdc-berlin.de/
http://www.mdc-berlin.de/en/bimsb/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie